Skip to content
Permalink
Machine-UART
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
# The minimal port
This port is intended to be a minimal MicroPython port that actually runs.
It can run under Linux (or similar) and on any STM32F4xx MCU (eg the pyboard).
## Building and running Linux version
By default the port will be built for the host machine:
$ make
To run the executable and get a basic working REPL do:
$ make run
## Building for an STM32 MCU
The Makefile has the ability to build for a Cortex-M CPU, and by default
includes some start-up code for an STM32F4xx MCU and also enables a UART
for communication. To build:
$ make CROSS=1
If you previously built the Linux version, you will need to first run
`make clean` to get rid of incompatible object files.
Building will produce the build/firmware.dfu file which can be programmed
to an MCU using:
$ make CROSS=1 deploy
This version of the build will work out-of-the-box on a pyboard (and
anything similar), and will give you a MicroPython REPL on UART1 at 9600
baud. Pin PA13 will also be driven high, and this turns on the red LED on
the pyboard.
## Building without the built-in MicroPython compiler
This minimal port can be built with the built-in MicroPython compiler
disabled. This will reduce the firmware by about 20k on a Thumb2 machine,
and by about 40k on 32-bit x86. Without the compiler the REPL will be
disabled, but pre-compiled scripts can still be executed.
To test out this feature, change the `MICROPY_ENABLE_COMPILER` config
option to "0" in the mpconfigport.h file in this directory. Then
recompile and run the firmware and it will execute the frozentest.py
file.