Skip to content
Permalink
Machine-UART
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
#include "py/runtime.h"
#include "py/mphal.h"
#include "modmachine.h"
// port-specific includes
#include "machine_pin_phy.h"
#include "mplogger.h"
#define MAX_PWM_OBJS 10 // TODO: Derive this from BSP
typedef struct _machine_pwm_obj_t {
mp_obj_base_t base;
cyhal_pwm_t pwm_obj;
machine_pin_phy_obj_t *pin;
uint32_t fz;
uint8_t duty_type;
mp_int_t duty;
// bool invert;
} machine_pwm_obj_t;
static machine_pwm_obj_t *pwm_obj[MAX_PWM_OBJS] = { NULL };
static inline machine_pwm_obj_t *pwm_obj_alloc() {
for (uint8_t i = 0; i < MAX_PWM_OBJS; i++)
{
if (pwm_obj[i] == NULL) {
pwm_obj[i] = mp_obj_malloc(machine_pwm_obj_t, &machine_pwm_type);
return pwm_obj[i];
}
}
return NULL;
}
static inline void pwm_obj_free(machine_pwm_obj_t *pwm_obj_ptr) {
for (uint8_t i = 0; i < MAX_PWM_OBJS; i++)
{
if (pwm_obj[i] == pwm_obj_ptr) {
pwm_obj[i] = NULL;
}
}
}
static inline void pwm_pin_alloc(machine_pwm_obj_t *pwm_obj, mp_obj_t pin_name) {
machine_pin_phy_obj_t *pin = pin_phy_realloc(pin_name, PIN_PHY_FUNC_PWM);
if (pin == NULL) {
size_t slen;
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("PWM pin (%s) not found !"), mp_obj_str_get_data(pin_name, &slen));
}
pwm_obj->pin = pin;
}
static inline void pwm_pin_free(machine_pwm_obj_t *pwm_obj) {
pin_phy_free(pwm_obj->pin);
}
enum {
VALUE_NOT_SET = -1,
DUTY_NOT_SET = 0,
DUTY_U16,
DUTY_NS
};
static void mp_machine_pwm_freq_set(machine_pwm_obj_t *self, mp_int_t freq);
static cy_rslt_t pwm_freq_duty_set(cyhal_pwm_t *pwm_obj, uint32_t fz, float duty_cycle) {
return cyhal_pwm_set_duty_cycle(pwm_obj, duty_cycle * 100, fz); // duty_cycle in percentage
}
static inline cy_rslt_t pwm_duty_set_ns(cyhal_pwm_t *pwm_obj, uint32_t fz, uint32_t pulse_width) {
return cyhal_pwm_set_period(pwm_obj, 1000000 / fz, pulse_width / 1000); // !# * --> /
}
/*STATIC inline cy_rslt_t pwm_advanced_init(machine_pwm_obj_t *machine_pwm_obj) {
return cyhal_pwm_init_adv(&machine_pwm_obj->pwm_obj, machine_pwm_obj->pin->addr, NC, CYHAL_PWM_LEFT_ALIGN, true, 0, true, NULL); // complimentary pin set as not connected
}*/
static void mp_machine_pwm_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_pwm_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "frequency=%u duty_cycle=%f", self->fz, (double)self->duty);
}
static void mp_machine_pwm_init_helper(machine_pwm_obj_t *self,
size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_freq, ARG_duty_u16, ARG_duty_ns};
// enum { ARG_freq, ARG_duty_u16, ARG_duty_ns, ARG_invert };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_freq, MP_ARG_INT, {.u_int = VALUE_NOT_SET} },
{ MP_QSTR_duty_u16, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = VALUE_NOT_SET} },
{ MP_QSTR_duty_ns, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = VALUE_NOT_SET} },
// { MP_QSTR_invert, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = VALUE_NOT_SET} },
};
// Parse the arguments.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args,
MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// self->active = 1;
if ((args[ARG_freq].u_int != VALUE_NOT_SET)) {
// pwm_freq_duty_set(&self->pwm_obj, args[ARG_freq].u_int, self->duty);
self->fz = args[ARG_freq].u_int;
}
if ((args[ARG_duty_u16].u_int != VALUE_NOT_SET)) {
float val = (float)(args[ARG_duty_u16].u_int) / (float)65535;
pwm_freq_duty_set(&self->pwm_obj, self->fz, val);
self->duty = args[ARG_duty_u16].u_int;
self->duty_type = DUTY_U16;
}
if (args[ARG_duty_ns].u_int != VALUE_NOT_SET) {
pwm_duty_set_ns(&self->pwm_obj, self->fz, args[ARG_duty_ns].u_int);
self->duty = args[ARG_duty_ns].u_int;
self->duty_type = DUTY_NS;
}
// inverts the respective output if the value is True
/*if (args[ARG_invert].u_int != VALUE_NOT_SET) {
self->invert = args[ARG_invert].u_int;
if (self->invert == 1) {
cyhal_pwm_free(&self->pwm_obj);
cy_rslt_t result = pwm_advanced_init(self);
if (result != CY_RSLT_SUCCESS) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("PWM initialisation failed with return code %lx ! and invert output is not available"), result);
}
self->duty_type = DUTY_U16;
self->duty = ((1) - ((self->duty) / 65535)) * 65535;
}
}*/
cyhal_pwm_start(&self->pwm_obj);
}
static mp_obj_t mp_machine_pwm_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// Check number of arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// Get static peripheral object.
machine_pwm_obj_t *self = pwm_obj_alloc();
pwm_pin_alloc(self, all_args[0]);
self->duty_type = DUTY_NOT_SET;
self->fz = -1;
// self->invert = -1;
// Initialize PWM
cy_rslt_t result = cyhal_pwm_init(&self->pwm_obj, self->pin->addr, NULL);
// To check whether PWM init is successful
if (result != CY_RSLT_SUCCESS) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("PWM initialisation failed with return code %lx !"), result);
}
// Process the remaining parameters.
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args);
mp_machine_pwm_init_helper(self, n_args - 1, all_args + 1, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
static void mp_machine_pwm_deinit(machine_pwm_obj_t *self) {
cyhal_pwm_stop(&self->pwm_obj);
cyhal_pwm_free(&self->pwm_obj);
pwm_pin_free(self);
pwm_obj_free(self);
}
static mp_obj_t mp_machine_pwm_duty_get_u16(machine_pwm_obj_t *self) {
if (self->duty_type == DUTY_NS) {
// duty_cycle = pulsewidth(ns)*freq(hz);
return mp_obj_new_float(((self->duty) * (self->fz) * 65535) / 1000000000 - 1);
} else {
return mp_obj_new_float(self->duty);
}
}
// sets the duty cycle as a ratio duty_u16 / 65535.
static void mp_machine_pwm_duty_set_u16(machine_pwm_obj_t *self, mp_int_t duty_u16) {
// Check the value is more than the max value
self->duty = duty_u16 > 65535 ? 65535 : duty_u16;
self->duty_type = DUTY_U16;
pwm_freq_duty_set(&self->pwm_obj, self->fz, (float)(self->duty) / (float)65535); // s conversion of duty_u16 into dutyu16/65535
}
static mp_obj_t mp_machine_pwm_duty_get_ns(machine_pwm_obj_t *self) {
if (self->duty_type == DUTY_U16) {
return mp_obj_new_float(((self->duty) * 1000000000) / ((self->fz) * 65535)); // pw (ns) = duty_cycle*10^9/fz
} else {
return mp_obj_new_float(self->duty);
}
}
// sets the pulse width in nanoseconds
static void mp_machine_pwm_duty_set_ns(machine_pwm_obj_t *self, mp_int_t duty_ns) {
self->duty = duty_ns;
self->duty_type = DUTY_NS;
pwm_duty_set_ns(&self->pwm_obj, self->fz, duty_ns);
}
static mp_obj_t mp_machine_pwm_freq_get(machine_pwm_obj_t *self) {
return MP_OBJ_NEW_SMALL_INT(self->fz);
}
static void mp_machine_pwm_freq_set(machine_pwm_obj_t *self, mp_int_t freq) {
self->fz = freq;
pwm_freq_duty_set(&self->pwm_obj, freq, self->duty);
if (self->duty_type == DUTY_NS) {
self->duty = ((self->duty) * (self->fz) * 65535) / 1000000000;
mp_machine_pwm_duty_set_ns(self, self->duty);
}
}
void mod_pwm_deinit() {
for (uint8_t i = 0; i < MAX_PWM_OBJS; i++) {
if (pwm_obj[i] != NULL) {
mp_machine_pwm_deinit(pwm_obj[i]);
}
}
}