Skip to content
Permalink
Machine-UART
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Jim Mussared
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This is a translation of the cycle counter implementation in ports/stm32/machine_bitstream.c.
#include "py/mpconfig.h"
#include "py/mphal.h"
#include "clock_config.h"
#if MICROPY_PY_MACHINE_BITSTREAM
#if __CORTEX_M == 0
// No cycle counter on M0, do manual cycle counting instead.
// STM32F091 @ 48MHz
#define NS_CYCLES_PER_ITER_HIGH (3)
#define NS_CYCLES_PER_ITER_LOW (3)
#define NS_OVERHEAD_CYCLES_HIGH (12)
#define NS_OVERHEAD_CYCLES_LOW (15)
uint32_t mp_hal_delay_ns_calc(uint32_t ns, bool high) {
uint32_t ncycles = (get_cpu_freq() / 1000000 * ns + 500) / 1000; // + 500 for proper rounding
uint32_t overhead = MIN(ncycles, high ? NS_OVERHEAD_CYCLES_HIGH : NS_OVERHEAD_CYCLES_LOW);
return MAX(1, MP_ROUND_DIVIDE(ncycles - overhead, high ? NS_CYCLES_PER_ITER_HIGH : NS_CYCLES_PER_ITER_LOW));
}
void machine_bitstream_high_low(mp_hal_pin_obj_t pin, uint32_t *timing_ns, const uint8_t *buf, size_t len) {
volatile const uint32_t mask = 1 << (pin % 32);
volatile uint32_t *outclr = &PORT->Group[pin / 32].OUTCLR.reg;
volatile uint32_t *outset = &PORT->Group[pin / 32].OUTSET.reg;
// Convert ns to loop iterations [high_time_0, low_time_0, high_time_1, low_time_1].
for (size_t i = 0; i < 4; ++i) {
timing_ns[i] = mp_hal_delay_ns_calc(timing_ns[i], i % 2 == 0);
}
mp_uint_t atomic_state = MICROPY_BEGIN_ATOMIC_SECTION();
// Measured timing for SAMD21 at 48MHz (cycle=20.83ns)
// timing_ns = (1,1,1,1)
// high: 310
// low: 375
// high0: 375
// low0: 400
// timing_ns = (500, 500, 500, 500)
// high: 500
// low: 500
// high0: 565
// low0: 540
// timing_ns = (1000, 1000, 1000, 1000)
// high: 1000
// low: 1000
// high0: 1065
// low0: 1040
// --> high is 12 + n*3 cycles
// low is 15 + n*3 cycles
// NeoPixel timing (400, 850, 800, 450) (+/-150ns) gives timing_ns=(2, 9, 8, 3) which in cycles is
// (12 + 6, 15 + 27, 15 + 24, 12 + 9) = (18, 42, 39, 21)
// --> (375, 875, 812, 437) nanoseconds.
// Measured output on logic analyser is (375, 875, 815, 435) (+/-5ns at 200MHz)
// Note: the first high/low cycle is longer by 2-3 cycles (40-60ns).
// This is slightly outside spec, but doesn't seem to cause a problem.
__asm volatile (
// Force consistent register assignment.
// r6 = len
"ldr r6, %0\n"
// r4 = buf
"ldr r4, %1\n"
// r5 = timing_ms
"ldr r5, %2\n"
// Must align for consistent timing.
".align 4\n"
// Don't increment/decrement before first iteration.
"b .outer2\n"
".outer:\n"
// ++buf, --len
" add r4, #1\n"
" sub r6, #1\n"
// len iterations
".outer2:\n"
" cmp r6, #0\n"
" beq .done\n"
// r0 = *buf
" ldrb r0, [r4, #0]\n"
// 8 bits in byte
" mov r7, #8\n"
" .inner:\n"
// *outset = mask
" ldr r2, %3\n"
" ldr r1, %5\n"
" str r1, [r2, #0]\n"
// r3 = (r0 >> 4) & 8 (r0 is 8 if high bit is 1 else 0)
" mov r8, r6\n"
" lsr r3, r0, #4\n"
" mov r6, #8\n"
" and r3, r6\n"
" mov r6, r8\n"
// r2 = timing_ns[r2]
" ldr r2, [r5, r3]\n"
" .loop1:\n sub r2, #1\n bne .loop1\n"
// *outclr = mask
" ldr r2, %4\n"
" str r1, [r2, #0]\n"
// r2 = timing_ns[r3 + 4]
" add r3, #4\n"
" ldr r2, [r5, r3]\n"
" .loop2:\n sub r2, #1\n bne .loop2\n"
// b >>= 1
" lsl r0, r0, #1\n"
" sub r7, #1\n"
// end of inner loop
" beq .outer\n"
// continue inner loop
" b .inner\n"
".done:\n"
:
: "m" (len), "m" (buf), "m" (timing_ns), "m" (outset), "m" (outclr), "m" (mask)
: "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8"
);
MICROPY_END_ATOMIC_SECTION(atomic_state);
}
#else // > CORTEX_M0
#define NS_TICKS_OVERHEAD (70)
void machine_bitstream_high_low(mp_hal_pin_obj_t pin, uint32_t *timing_ns, const uint8_t *buf, size_t len) {
uint32_t fcpu_mhz = get_cpu_freq() / 1000000;
uint32_t ticks_overhead = fcpu_mhz * NS_TICKS_OVERHEAD / 1000;
// Convert ns to us ticks [high_time_0, period_0, high_time_1, period_1].
for (size_t i = 0; i < 4; ++i) {
timing_ns[i] = fcpu_mhz * timing_ns[i] / 1000;
if (timing_ns[i] > ticks_overhead) {
timing_ns[i] -= ticks_overhead;
}
if (i % 2 == 1) {
// Convert low_time to period (i.e. add high_time).
timing_ns[i] += timing_ns[i - 1] - ticks_overhead;
}
}
mp_uint_t atomic_state = MICROPY_BEGIN_ATOMIC_SECTION();
DWT->CYCCNT = 0;
for (size_t i = 0; i < len; ++i) {
uint8_t b = buf[i];
for (size_t j = 0; j < 8; ++j) {
uint32_t start_ticks = mp_hal_ticks_cpu();
uint32_t *t = &timing_ns[b >> 6 & 2];
mp_hal_pin_high(pin);
while ((mp_hal_ticks_cpu() - start_ticks) < t[0]) {
}
b <<= 1;
mp_hal_pin_low(pin);
while ((mp_hal_ticks_cpu() - start_ticks) < t[1]) {
}
}
}
MICROPY_END_ATOMIC_SECTION(atomic_state);
}
#endif // > CORTEX_M0
#endif // MICROPY_PY_MACHINE_BITSTREAM