Skip to content
Permalink
Machine-UART
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2019 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/runtime.h"
#include "py/mphal.h"
#include "lib/oofatfs/ff.h"
#include "extmod/vfs_fat.h"
#include "sdcard.h"
#include "pin.h"
#include "pin_static_af.h"
#include "bufhelper.h"
#include "dma.h"
#include "irq.h"
#if MICROPY_HW_ENABLE_SDCARD || MICROPY_HW_ENABLE_MMCARD
#if defined(STM32F7) || defined(STM32H5) || defined(STM32H7) || defined(STM32L4)
// The H7/F7/L4 have 2 SDMMC peripherals, but at the moment this driver only supports
// using one of them in a given build, selected by MICROPY_HW_SDCARD_SDMMC.
#if MICROPY_HW_SDCARD_SDMMC == 2
#define SDIO SDMMC2
#define SDMMC_IRQHandler SDMMC2_IRQHandler
#define SDMMC_CLK_ENABLE() __HAL_RCC_SDMMC2_CLK_ENABLE()
#define SDMMC_CLK_DISABLE() __HAL_RCC_SDMMC2_CLK_DISABLE()
#define SDMMC_FORCE_RESET() __HAL_RCC_SDMMC2_FORCE_RESET()
#define SDMMC_RELEASE_RESET() __HAL_RCC_SDMMC2_RELEASE_RESET()
#define SDMMC_IRQn SDMMC2_IRQn
#define SDMMC_DMA dma_SDMMC_2
#define STATIC_AF_SDCARD_CK STATIC_AF_SDMMC2_CK
#define STATIC_AF_SDCARD_CMD STATIC_AF_SDMMC2_CMD
#define STATIC_AF_SDCARD_D0 STATIC_AF_SDMMC2_D0
#define STATIC_AF_SDCARD_D1 STATIC_AF_SDMMC2_D1
#define STATIC_AF_SDCARD_D2 STATIC_AF_SDMMC2_D2
#define STATIC_AF_SDCARD_D3 STATIC_AF_SDMMC2_D3
#define STATIC_AF_SDCARD_D4 STATIC_AF_SDMMC2_D4
#define STATIC_AF_SDCARD_D5 STATIC_AF_SDMMC2_D5
#define STATIC_AF_SDCARD_D6 STATIC_AF_SDMMC2_D6
#define STATIC_AF_SDCARD_D7 STATIC_AF_SDMMC2_D7
#else
#define SDIO SDMMC1
#define SDMMC_IRQHandler SDMMC1_IRQHandler
#define SDMMC_CLK_ENABLE() __HAL_RCC_SDMMC1_CLK_ENABLE()
#define SDMMC_CLK_DISABLE() __HAL_RCC_SDMMC1_CLK_DISABLE()
#define SDMMC_FORCE_RESET() __HAL_RCC_SDMMC1_FORCE_RESET()
#define SDMMC_RELEASE_RESET() __HAL_RCC_SDMMC1_RELEASE_RESET()
#define SDMMC_IRQn SDMMC1_IRQn
#define SDMMC_DMA dma_SDIO_0
#define STATIC_AF_SDCARD_CK STATIC_AF_SDMMC1_CK
#define STATIC_AF_SDCARD_CMD STATIC_AF_SDMMC1_CMD
#define STATIC_AF_SDCARD_D0 STATIC_AF_SDMMC1_D0
#define STATIC_AF_SDCARD_D1 STATIC_AF_SDMMC1_D1
#define STATIC_AF_SDCARD_D2 STATIC_AF_SDMMC1_D2
#define STATIC_AF_SDCARD_D3 STATIC_AF_SDMMC1_D3
#define STATIC_AF_SDCARD_D4 STATIC_AF_SDMMC1_D4
#define STATIC_AF_SDCARD_D5 STATIC_AF_SDMMC1_D5
#define STATIC_AF_SDCARD_D6 STATIC_AF_SDMMC1_D6
#define STATIC_AF_SDCARD_D7 STATIC_AF_SDMMC1_D7
#endif
// The F7 & L4 series calls the peripheral SDMMC rather than SDIO, so provide some
// #defines for backwards compatibility.
#define SDIO_CLOCK_EDGE_RISING SDMMC_CLOCK_EDGE_RISING
#define SDIO_CLOCK_EDGE_FALLING SDMMC_CLOCK_EDGE_FALLING
#define SDIO_CLOCK_BYPASS_DISABLE SDMMC_CLOCK_BYPASS_DISABLE
#define SDIO_CLOCK_BYPASS_ENABLE SDMMC_CLOCK_BYPASS_ENABLE
#define SDIO_CLOCK_POWER_SAVE_DISABLE SDMMC_CLOCK_POWER_SAVE_DISABLE
#define SDIO_CLOCK_POWER_SAVE_ENABLE SDMMC_CLOCK_POWER_SAVE_ENABLE
#define SDIO_BUS_WIDE_1B SDMMC_BUS_WIDE_1B
#define SDIO_BUS_WIDE_4B SDMMC_BUS_WIDE_4B
#define SDIO_BUS_WIDE_8B SDMMC_BUS_WIDE_8B
#define SDIO_HARDWARE_FLOW_CONTROL_DISABLE SDMMC_HARDWARE_FLOW_CONTROL_DISABLE
#define SDIO_HARDWARE_FLOW_CONTROL_ENABLE SDMMC_HARDWARE_FLOW_CONTROL_ENABLE
#if defined(STM32H5) || defined(STM32H7)
#define SDIO_TRANSFER_CLK_DIV SDMMC_NSpeed_CLK_DIV
#define SDIO_USE_GPDMA 0
#else
#define SDIO_TRANSFER_CLK_DIV SDMMC_TRANSFER_CLK_DIV
#define SDIO_USE_GPDMA 1
#endif
#else
// These are definitions for F4 MCUs so there is a common macro across all MCUs.
#define SDMMC_CLK_ENABLE() __SDIO_CLK_ENABLE()
#define SDMMC_CLK_DISABLE() __SDIO_CLK_DISABLE()
#define SDMMC_IRQn SDIO_IRQn
#define SDMMC_IRQHandler SDIO_IRQHandler
#define SDMMC_DMA dma_SDIO_0
#define SDIO_USE_GPDMA 1
#define STATIC_AF_SDCARD_CK STATIC_AF_SDIO_CK
#define STATIC_AF_SDCARD_CMD STATIC_AF_SDIO_CMD
#define STATIC_AF_SDCARD_D0 STATIC_AF_SDIO_D0
#define STATIC_AF_SDCARD_D1 STATIC_AF_SDIO_D1
#define STATIC_AF_SDCARD_D2 STATIC_AF_SDIO_D2
#define STATIC_AF_SDCARD_D3 STATIC_AF_SDIO_D3
#define STATIC_AF_SDCARD_D4 STATIC_AF_SDIO_D4
#define STATIC_AF_SDCARD_D5 STATIC_AF_SDIO_D5
#define STATIC_AF_SDCARD_D6 STATIC_AF_SDIO_D6
#define STATIC_AF_SDCARD_D7 STATIC_AF_SDIO_D7
#endif
// If no custom SDIO pins defined, use the default ones
#ifndef MICROPY_HW_SDCARD_CK
#define MICROPY_HW_SDCARD_D0 (pin_C8)
#define MICROPY_HW_SDCARD_D1 (pin_C9)
#define MICROPY_HW_SDCARD_D2 (pin_C10)
#define MICROPY_HW_SDCARD_D3 (pin_C11)
#define MICROPY_HW_SDCARD_CK (pin_C12)
#define MICROPY_HW_SDCARD_CMD (pin_D2)
#endif
// Define a constant to select the bus width.
#if MICROPY_HW_SDCARD_BUS_WIDTH == 4
#define SDIO_BUS_WIDE_VALUE SDIO_BUS_WIDE_4B
#elif MICROPY_HW_SDCARD_BUS_WIDTH == 8
#define SDIO_BUS_WIDE_VALUE SDIO_BUS_WIDE_8B
#endif
#define PYB_SDMMC_FLAG_SD (0x01)
#define PYB_SDMMC_FLAG_MMC (0x02)
#define PYB_SDMMC_FLAG_ACTIVE (0x04)
static uint8_t pyb_sdmmc_flags;
// TODO: I think that as an optimization, we can allocate these dynamically
// if an sd card is detected. This will save approx 260 bytes of RAM
// when no sdcard was being used.
static union {
SD_HandleTypeDef sd;
#if MICROPY_HW_ENABLE_MMCARD
MMC_HandleTypeDef mmc;
#endif
} sdmmc_handle;
void sdcard_init(void) {
// Set SD/MMC to no mode and inactive
pyb_sdmmc_flags = 0;
// configure SD GPIO
// we do this here an not in HAL_SD_MspInit because it apparently
// makes it more robust to have the pins always pulled high
// Note: the mp_hal_pin_config function will configure the GPIO in
// fast mode which can do up to 50MHz. This should be plenty for SDIO
// which clocks up to 25MHz maximum.
mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_CK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_CK);
mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_CMD, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_CMD);
mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_D0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_D0);
#if MICROPY_HW_SDCARD_BUS_WIDTH >= 4
mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_D1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_D1);
mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_D2, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_D2);
mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_D3, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_D3);
#if MICROPY_HW_SDCARD_BUS_WIDTH == 8
mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_D4, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_D4);
mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_D5, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_D5);
mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_D6, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_D6);
mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_D7, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_D7);
#endif
#endif
// configure the SD card detect pin
// we do this here so we can detect if the SD card is inserted before powering it on
#if defined(MICROPY_HW_SDCARD_DETECT_PIN)
mp_hal_pin_config(MICROPY_HW_SDCARD_DETECT_PIN, MP_HAL_PIN_MODE_INPUT, MICROPY_HW_SDCARD_DETECT_PULL, 0);
#endif
}
void sdcard_select_sd(void) {
pyb_sdmmc_flags |= PYB_SDMMC_FLAG_SD;
}
void sdcard_select_mmc(void) {
pyb_sdmmc_flags |= PYB_SDMMC_FLAG_MMC;
}
static void sdmmc_msp_init(void) {
// enable SDIO clock
SDMMC_CLK_ENABLE();
#if defined(STM32H7)
// Reset SDMMC
SDMMC_FORCE_RESET();
SDMMC_RELEASE_RESET();
#endif
// NVIC configuration for SDIO interrupts
NVIC_SetPriority(SDMMC_IRQn, IRQ_PRI_SDIO);
HAL_NVIC_EnableIRQ(SDMMC_IRQn);
// GPIO have already been initialised by sdcard_init
}
void sdmmc_msp_deinit(void) {
HAL_NVIC_DisableIRQ(SDMMC_IRQn);
SDMMC_CLK_DISABLE();
}
#if MICROPY_HW_ENABLE_SDCARD
void HAL_SD_MspInit(SD_HandleTypeDef *hsd) {
sdmmc_msp_init();
}
void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) {
sdmmc_msp_deinit();
}
#endif
#if MICROPY_HW_ENABLE_MMCARD
void HAL_MMC_MspInit(MMC_HandleTypeDef *hsd) {
sdmmc_msp_init();
}
void HAL_MMC_MspDeInit(MMC_HandleTypeDef *hsd) {
sdmmc_msp_deinit();
}
#endif
bool sdcard_is_present(void) {
#if MICROPY_HW_ENABLE_MMCARD
if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) {
return false;
}
#endif
#if defined(MICROPY_HW_SDCARD_DETECT_PIN)
return mp_hal_pin_read(MICROPY_HW_SDCARD_DETECT_PIN) == MICROPY_HW_SDCARD_DETECT_PRESENT;
#else
return true;
#endif
}
#if MICROPY_HW_ENABLE_SDCARD
static HAL_StatusTypeDef sdmmc_init_sd(void) {
// SD device interface configuration
sdmmc_handle.sd.Instance = SDIO;
sdmmc_handle.sd.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING;
#if !defined(STM32H5) && !defined(STM32H7)
sdmmc_handle.sd.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE;
#endif
sdmmc_handle.sd.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_ENABLE;
sdmmc_handle.sd.Init.BusWide = SDIO_BUS_WIDE_1B;
sdmmc_handle.sd.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE;
sdmmc_handle.sd.Init.ClockDiv = SDIO_TRANSFER_CLK_DIV;
// init the SD interface, with retry if it's not ready yet
HAL_StatusTypeDef status;
for (int retry = 10; (status = HAL_SD_Init(&sdmmc_handle.sd)) != HAL_OK; retry--) {
if (retry == 0) {
return status;
}
mp_hal_delay_ms(50);
}
#if MICROPY_HW_SDCARD_BUS_WIDTH >= 4
// configure the SD bus width for 4/8-bit wide operation
status = HAL_SD_ConfigWideBusOperation(&sdmmc_handle.sd, SDIO_BUS_WIDE_VALUE);
if (status != HAL_OK) {
HAL_SD_DeInit(&sdmmc_handle.sd);
return status;
}
#endif
return HAL_OK;
}
#endif
#if MICROPY_HW_ENABLE_MMCARD
static HAL_StatusTypeDef sdmmc_init_mmc(void) {
// MMC device interface configuration
sdmmc_handle.mmc.Instance = SDIO;
sdmmc_handle.mmc.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING;
#ifndef STM32H7
sdmmc_handle.mmc.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE;
#endif
sdmmc_handle.mmc.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_ENABLE;
sdmmc_handle.mmc.Init.BusWide = SDIO_BUS_WIDE_1B;
sdmmc_handle.mmc.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE;
sdmmc_handle.mmc.Init.ClockDiv = SDIO_TRANSFER_CLK_DIV;
// Init the SDIO interface
HAL_StatusTypeDef status = HAL_MMC_Init(&sdmmc_handle.mmc);
if (status != HAL_OK) {
return status;
}
#ifdef MICROPY_HW_MMCARD_LOG_BLOCK_NBR
// A board can override the number of logical blocks (card capacity) if needed.
// This is needed when a card is high capacity because the extended CSD command
// is not supported by the current version of the HAL.
sdmmc_handle.mmc.MmcCard.LogBlockNbr = MICROPY_HW_MMCARD_LOG_BLOCK_NBR;
#endif
#if MICROPY_HW_SDCARD_BUS_WIDTH >= 4
// Configure the SDIO bus width for 4/8-bit wide operation
#ifdef STM32F7
sdmmc_handle.mmc.Init.ClockBypass = SDIO_CLOCK_BYPASS_ENABLE;
#endif
status = HAL_MMC_ConfigWideBusOperation(&sdmmc_handle.mmc, SDIO_BUS_WIDE_VALUE);
if (status != HAL_OK) {
HAL_MMC_DeInit(&sdmmc_handle.mmc);
return status;
}
#endif
return HAL_OK;
}
#endif
bool sdcard_power_on(void) {
if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_ACTIVE) {
return true;
}
#ifdef MICROPY_BOARD_SDCARD_POWER
MICROPY_BOARD_SDCARD_POWER
#endif
HAL_StatusTypeDef status = HAL_ERROR;
switch (pyb_sdmmc_flags) {
#if MICROPY_HW_ENABLE_SDCARD
case PYB_SDMMC_FLAG_SD:
if (sdcard_is_present()) {
status = sdmmc_init_sd();
}
break;
#endif
#if MICROPY_HW_ENABLE_MMCARD
case PYB_SDMMC_FLAG_MMC:
status = sdmmc_init_mmc();
break;
#endif
}
if (status == HAL_OK) {
pyb_sdmmc_flags |= PYB_SDMMC_FLAG_ACTIVE;
return true;
} else {
return false;
}
}
void sdcard_power_off(void) {
switch (pyb_sdmmc_flags) {
#if MICROPY_HW_ENABLE_SDCARD
case PYB_SDMMC_FLAG_ACTIVE | PYB_SDMMC_FLAG_SD:
HAL_SD_DeInit(&sdmmc_handle.sd);
break;
#endif
#if MICROPY_HW_ENABLE_MMCARD
case PYB_SDMMC_FLAG_ACTIVE | PYB_SDMMC_FLAG_MMC:
HAL_MMC_DeInit(&sdmmc_handle.mmc);
break;
#endif
}
pyb_sdmmc_flags &= ~PYB_SDMMC_FLAG_ACTIVE;
}
uint64_t sdcard_get_capacity_in_bytes(void) {
switch (pyb_sdmmc_flags) {
#if MICROPY_HW_ENABLE_SDCARD
case PYB_SDMMC_FLAG_ACTIVE | PYB_SDMMC_FLAG_SD: {
HAL_SD_CardInfoTypeDef cardinfo;
HAL_SD_GetCardInfo(&sdmmc_handle.sd, &cardinfo);
return (uint64_t)cardinfo.LogBlockNbr * (uint64_t)cardinfo.LogBlockSize;
}
#endif
#if MICROPY_HW_ENABLE_MMCARD
case PYB_SDMMC_FLAG_ACTIVE | PYB_SDMMC_FLAG_MMC: {
HAL_MMC_CardInfoTypeDef cardinfo;
HAL_MMC_GetCardInfo(&sdmmc_handle.mmc, &cardinfo);
return (uint64_t)cardinfo.LogBlockNbr * (uint64_t)cardinfo.LogBlockSize;
}
#endif
default:
return 0;
}
}
static void sdmmc_irq_handler(void) {
switch (pyb_sdmmc_flags) {
#if MICROPY_HW_ENABLE_SDCARD
case PYB_SDMMC_FLAG_ACTIVE | PYB_SDMMC_FLAG_SD:
HAL_SD_IRQHandler(&sdmmc_handle.sd);
break;
#endif
#if MICROPY_HW_ENABLE_MMCARD
case PYB_SDMMC_FLAG_ACTIVE | PYB_SDMMC_FLAG_MMC:
HAL_MMC_IRQHandler(&sdmmc_handle.mmc);
break;
#endif
}
}
void SDMMC_IRQHandler(void) {
IRQ_ENTER(SDMMC_IRQn);
sdmmc_irq_handler();
IRQ_EXIT(SDMMC_IRQn);
}
static void sdcard_reset_periph(void) {
// Fully reset the SDMMC peripheral before calling HAL SD DMA functions.
// (There could be an outstanding DTIMEOUT event from a previous call and the
// HAL function enables IRQs before fully configuring the SDMMC peripheral.)
SDIO->DTIMER = 0;
SDIO->DLEN = 0;
SDIO->DCTRL = 0;
SDIO->ICR = SDMMC_STATIC_FLAGS;
}
static HAL_StatusTypeDef sdcard_wait_finished(uint32_t timeout) {
// Wait for HAL driver to be ready (eg for DMA to finish)
uint32_t start = HAL_GetTick();
for (;;) {
// Do an atomic check of the state; WFI will exit even if IRQs are disabled
uint32_t irq_state = disable_irq();
#if MICROPY_HW_ENABLE_MMCARD
if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) {
if (sdmmc_handle.mmc.State != HAL_MMC_STATE_BUSY) {
enable_irq(irq_state);
break;
}
} else
#endif
{
if (sdmmc_handle.sd.State != HAL_SD_STATE_BUSY) {
enable_irq(irq_state);
break;
}
}
__WFI();
enable_irq(irq_state);
if (HAL_GetTick() - start >= timeout) {
return HAL_TIMEOUT;
}
}
// Wait for SD card to complete the operation
for (;;) {
uint32_t state;
#if MICROPY_HW_ENABLE_MMCARD
MP_STATIC_ASSERT((uint32_t)HAL_SD_CARD_TRANSFER == (uint32_t)HAL_MMC_CARD_TRANSFER);
MP_STATIC_ASSERT((uint32_t)HAL_SD_CARD_SENDING == (uint32_t)HAL_MMC_CARD_SENDING);
MP_STATIC_ASSERT((uint32_t)HAL_SD_CARD_RECEIVING == (uint32_t)HAL_MMC_CARD_RECEIVING);
MP_STATIC_ASSERT((uint32_t)HAL_SD_CARD_PROGRAMMING == (uint32_t)HAL_MMC_CARD_PROGRAMMING);
if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) {
state = HAL_MMC_GetCardState(&sdmmc_handle.mmc);
} else
#endif
{
state = HAL_SD_GetCardState(&sdmmc_handle.sd);
}
if (state == HAL_SD_CARD_TRANSFER) {
return HAL_OK;
}
if (!(state == HAL_SD_CARD_SENDING || state == HAL_SD_CARD_RECEIVING || state == HAL_SD_CARD_PROGRAMMING)) {
return HAL_ERROR;
}
if (HAL_GetTick() - start >= timeout) {
return HAL_TIMEOUT;
}
__WFI();
}
return HAL_OK;
}
mp_uint_t sdcard_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
// check that SD card is initialised
if (!(pyb_sdmmc_flags & PYB_SDMMC_FLAG_ACTIVE)) {
return HAL_ERROR;
}
HAL_StatusTypeDef err = HAL_OK;
// check that dest pointer is aligned on a 4-byte boundary
uint8_t *orig_dest = NULL;
uint32_t saved_word;
if (((uint32_t)dest & 3) != 0) {
// Pointer is not aligned so it needs fixing.
// We could allocate a temporary block of RAM (as sdcard_write_blocks
// does) but instead we are going to use the dest buffer inplace. We
// are going to align the pointer, save the initial word at the aligned
// location, read into the aligned memory, move the memory back to the
// unaligned location, then restore the initial bytes at the aligned
// location. We should have no trouble doing this as those initial
// bytes at the aligned location should be able to be changed for the
// duration of this function call.
orig_dest = dest;
dest = (uint8_t *)((uint32_t)dest & ~3);
saved_word = *(uint32_t *)dest;
}
if (query_irq() == IRQ_STATE_ENABLED) {
// we must disable USB irqs to prevent MSC contention with SD card
uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS);
#if SDIO_USE_GPDMA
DMA_HandleTypeDef sd_dma;
dma_init(&sd_dma, &SDMMC_DMA, DMA_PERIPH_TO_MEMORY, &sdmmc_handle);
#if MICROPY_HW_ENABLE_MMCARD
if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) {
sdmmc_handle.mmc.hdmarx = &sd_dma;
} else
#endif
{
sdmmc_handle.sd.hdmarx = &sd_dma;
}
#endif
// make sure cache is flushed and invalidated so when DMA updates the RAM
// from reading the peripheral the CPU then reads the new data
MP_HAL_CLEANINVALIDATE_DCACHE(dest, num_blocks * SDCARD_BLOCK_SIZE);
sdcard_reset_periph();
#if MICROPY_HW_ENABLE_MMCARD
if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) {
err = HAL_MMC_ReadBlocks_DMA(&sdmmc_handle.mmc, dest, block_num, num_blocks);
} else
#endif
{
err = HAL_SD_ReadBlocks_DMA(&sdmmc_handle.sd, dest, block_num, num_blocks);
}
if (err == HAL_OK) {
err = sdcard_wait_finished(60000);
}
#if SDIO_USE_GPDMA
dma_deinit(&SDMMC_DMA);
#if MICROPY_HW_ENABLE_MMCARD
if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) {
sdmmc_handle.mmc.hdmarx = NULL;
} else
#endif
{
sdmmc_handle.sd.hdmarx = NULL;
}
#endif
restore_irq_pri(basepri);
} else {
#if MICROPY_HW_ENABLE_MMCARD
if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) {
err = HAL_MMC_ReadBlocks(&sdmmc_handle.mmc, dest, block_num, num_blocks, 60000);
} else
#endif
{
err = HAL_SD_ReadBlocks(&sdmmc_handle.sd, dest, block_num, num_blocks, 60000);
}
if (err == HAL_OK) {
err = sdcard_wait_finished(60000);
}
}
if (orig_dest != NULL) {
// move the read data to the non-aligned position, and restore the initial bytes
memmove(orig_dest, dest, num_blocks * SDCARD_BLOCK_SIZE);
memcpy(dest, &saved_word, orig_dest - dest);
}
return err;
}
mp_uint_t sdcard_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
// check that SD card is initialised
if (!(pyb_sdmmc_flags & PYB_SDMMC_FLAG_ACTIVE)) {
return HAL_ERROR;
}
HAL_StatusTypeDef err = HAL_OK;
// check that src pointer is aligned on a 4-byte boundary
if (((uint32_t)src & 3) != 0) {
// pointer is not aligned, so allocate a temporary block to do the write
uint8_t *src_aligned = m_new_maybe(uint8_t, SDCARD_BLOCK_SIZE);
if (src_aligned == NULL) {
return HAL_ERROR;
}
for (size_t i = 0; i < num_blocks; ++i) {
memcpy(src_aligned, src + i * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE);
err = sdcard_write_blocks(src_aligned, block_num + i, 1);
if (err != HAL_OK) {
break;
}
}
m_del(uint8_t, src_aligned, SDCARD_BLOCK_SIZE);
return err;
}
if (query_irq() == IRQ_STATE_ENABLED) {
// we must disable USB irqs to prevent MSC contention with SD card
uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS);
#if SDIO_USE_GPDMA
DMA_HandleTypeDef sd_dma;
dma_init(&sd_dma, &SDMMC_DMA, DMA_MEMORY_TO_PERIPH, &sdmmc_handle);
#if MICROPY_HW_ENABLE_MMCARD
if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) {
sdmmc_handle.mmc.hdmatx = &sd_dma;
} else
#endif
{
sdmmc_handle.sd.hdmatx = &sd_dma;
}
#endif
// make sure cache is flushed to RAM so the DMA can read the correct data
MP_HAL_CLEAN_DCACHE(src, num_blocks * SDCARD_BLOCK_SIZE);
sdcard_reset_periph();
#if MICROPY_HW_ENABLE_MMCARD
if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) {
err = HAL_MMC_WriteBlocks_DMA(&sdmmc_handle.mmc, (uint8_t *)src, block_num, num_blocks);
} else
#endif
{
err = HAL_SD_WriteBlocks_DMA(&sdmmc_handle.sd, (uint8_t *)src, block_num, num_blocks);
}
if (err == HAL_OK) {
err = sdcard_wait_finished(60000);
}
#if SDIO_USE_GPDMA
dma_deinit(&SDMMC_DMA);
#if MICROPY_HW_ENABLE_MMCARD
if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) {
sdmmc_handle.mmc.hdmatx = NULL;
} else
#endif
{
sdmmc_handle.sd.hdmatx = NULL;
}
#endif
restore_irq_pri(basepri);
} else {
#if MICROPY_HW_ENABLE_MMCARD
if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) {
err = HAL_MMC_WriteBlocks(&sdmmc_handle.mmc, (uint8_t *)src, block_num, num_blocks, 60000);
} else
#endif
{
err = HAL_SD_WriteBlocks(&sdmmc_handle.sd, (uint8_t *)src, block_num, num_blocks, 60000);
}
if (err == HAL_OK) {
err = sdcard_wait_finished(60000);
}
}
return err;
}
/******************************************************************************/
// MicroPython bindings
//
// Expose the SD card or MMC as an object with the block protocol.
#if !BUILDING_MBOOT
// There are singleton SDCard/MMCard objects
#if MICROPY_HW_ENABLE_SDCARD
const mp_obj_base_t pyb_sdcard_obj = {&pyb_sdcard_type};
#endif
#if MICROPY_HW_ENABLE_MMCARD
const mp_obj_base_t pyb_mmcard_obj = {&pyb_mmcard_type};
#endif
#if MICROPY_HW_ENABLE_SDCARD
static mp_obj_t pyb_sdcard_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
#if MICROPY_HW_ENABLE_MMCARD
if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) {
mp_raise_ValueError(MP_ERROR_TEXT("peripheral used by MMCard"));
}
#endif
pyb_sdmmc_flags |= PYB_SDMMC_FLAG_SD;
// return singleton object
return MP_OBJ_FROM_PTR(&pyb_sdcard_obj);
}
#endif
#if MICROPY_HW_ENABLE_MMCARD
static mp_obj_t pyb_mmcard_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
#if MICROPY_HW_ENABLE_SDCARD
if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_SD) {
mp_raise_ValueError(MP_ERROR_TEXT("peripheral used by SDCard"));
}
#endif
pyb_sdmmc_flags |= PYB_SDMMC_FLAG_MMC;
// return singleton object
return MP_OBJ_FROM_PTR(&pyb_mmcard_obj);
}
#endif
static mp_obj_t sd_present(mp_obj_t self) {
return mp_obj_new_bool(sdcard_is_present());
}
static MP_DEFINE_CONST_FUN_OBJ_1(sd_present_obj, sd_present);
static mp_obj_t sd_power(mp_obj_t self, mp_obj_t state) {
bool result;
if (mp_obj_is_true(state)) {
result = sdcard_power_on();
} else {
sdcard_power_off();
result = true;
}
return mp_obj_new_bool(result);
}
static MP_DEFINE_CONST_FUN_OBJ_2(sd_power_obj, sd_power);
static mp_obj_t sd_info(mp_obj_t self) {
if (!(pyb_sdmmc_flags & PYB_SDMMC_FLAG_ACTIVE)) {
return mp_const_none;
}
uint32_t card_type;
uint32_t log_block_nbr;
uint32_t log_block_size;
#if MICROPY_HW_ENABLE_MMCARD
if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) {
card_type = sdmmc_handle.mmc.MmcCard.CardType;
log_block_nbr = sdmmc_handle.mmc.MmcCard.LogBlockNbr;
log_block_size = sdmmc_handle.mmc.MmcCard.LogBlockSize;
} else
#endif
{
card_type = sdmmc_handle.sd.SdCard.CardType;
log_block_nbr = sdmmc_handle.sd.SdCard.LogBlockNbr;
log_block_size = sdmmc_handle.sd.SdCard.LogBlockSize;
}
// cardinfo.SD_csd and cardinfo.SD_cid have lots of info but we don't use them
mp_obj_t tuple[3] = {
mp_obj_new_int_from_ull((uint64_t)log_block_nbr * (uint64_t)log_block_size),
mp_obj_new_int_from_uint(log_block_size),
mp_obj_new_int(card_type),
};
return mp_obj_new_tuple(3, tuple);
}
static MP_DEFINE_CONST_FUN_OBJ_1(sd_info_obj, sd_info);
// now obsolete, kept for backwards compatibility
static mp_obj_t sd_read(mp_obj_t self, mp_obj_t block_num) {
uint8_t *dest = m_new(uint8_t, SDCARD_BLOCK_SIZE);
mp_uint_t ret = sdcard_read_blocks(dest, mp_obj_get_int(block_num), 1);
if (ret != 0) {
m_del(uint8_t, dest, SDCARD_BLOCK_SIZE);
mp_raise_msg_varg(&mp_type_Exception, MP_ERROR_TEXT("sdcard_read_blocks failed [%u]"), ret);
}
return mp_obj_new_bytearray_by_ref(SDCARD_BLOCK_SIZE, dest);
}
static MP_DEFINE_CONST_FUN_OBJ_2(sd_read_obj, sd_read);
// now obsolete, kept for backwards compatibility
static mp_obj_t sd_write(mp_obj_t self, mp_obj_t block_num, mp_obj_t data) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(data, &bufinfo, MP_BUFFER_READ);
if (bufinfo.len % SDCARD_BLOCK_SIZE != 0) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("writes must be a multiple of %d bytes"), SDCARD_BLOCK_SIZE);
}
mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);
if (ret != 0) {
mp_raise_msg_varg(&mp_type_Exception, MP_ERROR_TEXT("sdcard_write_blocks failed [%u]"), ret);
}
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_3(sd_write_obj, sd_write);
static mp_obj_t pyb_sdcard_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
mp_uint_t ret = sdcard_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);
return mp_obj_new_bool(ret == 0);
}
static MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_readblocks_obj, pyb_sdcard_readblocks);
static mp_obj_t pyb_sdcard_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);
return mp_obj_new_bool(ret == 0);
}
static MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_writeblocks_obj, pyb_sdcard_writeblocks);
static mp_obj_t pyb_sdcard_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) {
mp_int_t cmd = mp_obj_get_int(cmd_in);
switch (cmd) {
case MP_BLOCKDEV_IOCTL_INIT:
if (!sdcard_power_on()) {
return MP_OBJ_NEW_SMALL_INT(-1); // error
}
return MP_OBJ_NEW_SMALL_INT(0); // success
case MP_BLOCKDEV_IOCTL_DEINIT:
sdcard_power_off();
return MP_OBJ_NEW_SMALL_INT(0); // success
case MP_BLOCKDEV_IOCTL_SYNC:
// nothing to do
return MP_OBJ_NEW_SMALL_INT(0); // success
case MP_BLOCKDEV_IOCTL_BLOCK_COUNT:
return MP_OBJ_NEW_SMALL_INT(sdcard_get_capacity_in_bytes() / SDCARD_BLOCK_SIZE);
case MP_BLOCKDEV_IOCTL_BLOCK_SIZE:
return MP_OBJ_NEW_SMALL_INT(SDCARD_BLOCK_SIZE);
default: // unknown command
return MP_OBJ_NEW_SMALL_INT(-1); // error
}
}
static MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_ioctl_obj, pyb_sdcard_ioctl);
static const mp_rom_map_elem_t pyb_sdcard_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_present), MP_ROM_PTR(&sd_present_obj) },
{ MP_ROM_QSTR(MP_QSTR_power), MP_ROM_PTR(&sd_power_obj) },
{ MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&sd_info_obj) },
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&sd_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&sd_write_obj) },
// block device protocol
{ MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&pyb_sdcard_readblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&pyb_sdcard_writeblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&pyb_sdcard_ioctl_obj) },
};
static MP_DEFINE_CONST_DICT(pyb_sdcard_locals_dict, pyb_sdcard_locals_dict_table);
#if MICROPY_HW_ENABLE_SDCARD
MP_DEFINE_CONST_OBJ_TYPE(
pyb_sdcard_type,
MP_QSTR_SDCard,
MP_TYPE_FLAG_NONE,
make_new, pyb_sdcard_make_new,
locals_dict, &pyb_sdcard_locals_dict
);
#endif
#if MICROPY_HW_ENABLE_MMCARD
MP_DEFINE_CONST_OBJ_TYPE(
pyb_mmcard_type,
MP_QSTR_MMCard,
MP_TYPE_FLAG_NONE,
make_new, pyb_mmcard_make_new,
locals_dict, &pyb_sdcard_locals_dict
);
#endif
void sdcard_init_vfs(fs_user_mount_t *vfs, int part) {
pyb_sdmmc_flags = (pyb_sdmmc_flags & PYB_SDMMC_FLAG_ACTIVE) | PYB_SDMMC_FLAG_SD; // force SD mode
vfs->base.type = &mp_fat_vfs_type;
vfs->blockdev.flags |= MP_BLOCKDEV_FLAG_NATIVE | MP_BLOCKDEV_FLAG_HAVE_IOCTL;
vfs->fatfs.drv = vfs;
#if MICROPY_FATFS_MULTI_PARTITION
vfs->fatfs.part = part;
#endif
vfs->blockdev.readblocks[0] = MP_OBJ_FROM_PTR(&pyb_sdcard_readblocks_obj);
vfs->blockdev.readblocks[1] = MP_OBJ_FROM_PTR(&pyb_sdcard_obj);
vfs->blockdev.readblocks[2] = MP_OBJ_FROM_PTR(sdcard_read_blocks); // native version
vfs->blockdev.writeblocks[0] = MP_OBJ_FROM_PTR(&pyb_sdcard_writeblocks_obj);
vfs->blockdev.writeblocks[1] = MP_OBJ_FROM_PTR(&pyb_sdcard_obj);
vfs->blockdev.writeblocks[2] = MP_OBJ_FROM_PTR(sdcard_write_blocks); // native version
vfs->blockdev.u.ioctl[0] = MP_OBJ_FROM_PTR(&pyb_sdcard_ioctl_obj);
vfs->blockdev.u.ioctl[1] = MP_OBJ_FROM_PTR(&pyb_sdcard_obj);
}
#endif // !BUILDING_MBOOT
#endif // MICROPY_HW_ENABLE_SDCARD || MICROPY_HW_ENABLE_MMCARD