Skip to content
Permalink
Machine-UART
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
#include "py/runtime.h"
#include "py/gc.h"
#include "timer.h"
#include "servo.h"
#include "pin.h"
#include "irq.h"
/// \moduleref pyb
/// \class Timer - periodically call a function
///
/// Timers can be used for a great variety of tasks. At the moment, only
/// the simplest case is implemented: that of calling a function periodically.
///
/// Each timer consists of a counter that counts up at a certain rate. The rate
/// at which it counts is the peripheral clock frequency (in Hz) divided by the
/// timer prescaler. When the counter reaches the timer period it triggers an
/// event, and the counter resets back to zero. By using the callback method,
/// the timer event can call a Python function.
///
/// Example usage to toggle an LED at a fixed frequency:
///
/// tim = pyb.Timer(4) # create a timer object using timer 4
/// tim.init(freq=2) # trigger at 2Hz
/// tim.callback(lambda t:pyb.LED(1).toggle())
///
/// Further examples:
///
/// tim = pyb.Timer(4, freq=100) # freq in Hz
/// tim = pyb.Timer(4, prescaler=0, period=99)
/// tim.counter() # get counter (can also set)
/// tim.prescaler(2) # set prescaler (can also get)
/// tim.period(199) # set period (can also get)
/// tim.callback(lambda t: ...) # set callback for update interrupt (t=tim instance)
/// tim.callback(None) # clear callback
///
/// *Note:* Timer 3 is used for fading the blue LED. Timer 5 controls
/// the servo driver, and Timer 6 is used for timed ADC/DAC reading/writing.
/// It is recommended to use the other timers in your programs.
// The timers can be used by multiple drivers, and need a common point for
// the interrupts to be dispatched, so they are all collected here.
//
// TIM3:
// - LED 4, PWM to set the LED intensity
//
// TIM5:
// - servo controller, PWM
//
// TIM6:
// - ADC, DAC for read_timed and write_timed
typedef enum {
CHANNEL_MODE_PWM_NORMAL,
CHANNEL_MODE_PWM_INVERTED,
CHANNEL_MODE_OC_TIMING,
CHANNEL_MODE_OC_ACTIVE,
CHANNEL_MODE_OC_INACTIVE,
CHANNEL_MODE_OC_TOGGLE,
CHANNEL_MODE_OC_FORCED_ACTIVE,
CHANNEL_MODE_OC_FORCED_INACTIVE,
CHANNEL_MODE_IC,
CHANNEL_MODE_ENC_A,
CHANNEL_MODE_ENC_B,
CHANNEL_MODE_ENC_AB,
} pyb_channel_mode;
static const struct {
qstr name;
uint32_t oc_mode;
} channel_mode_info[] = {
{ MP_QSTR_PWM, TIM_OCMODE_PWM1 },
{ MP_QSTR_PWM_INVERTED, TIM_OCMODE_PWM2 },
{ MP_QSTR_OC_TIMING, TIM_OCMODE_TIMING },
{ MP_QSTR_OC_ACTIVE, TIM_OCMODE_ACTIVE },
{ MP_QSTR_OC_INACTIVE, TIM_OCMODE_INACTIVE },
{ MP_QSTR_OC_TOGGLE, TIM_OCMODE_TOGGLE },
{ MP_QSTR_OC_FORCED_ACTIVE, TIM_OCMODE_FORCED_ACTIVE },
{ MP_QSTR_OC_FORCED_INACTIVE, TIM_OCMODE_FORCED_INACTIVE },
{ MP_QSTR_IC, 0 },
{ MP_QSTR_ENC_A, TIM_ENCODERMODE_TI1 },
{ MP_QSTR_ENC_B, TIM_ENCODERMODE_TI2 },
{ MP_QSTR_ENC_AB, TIM_ENCODERMODE_TI12 },
};
enum {
BRK_OFF,
BRK_LOW,
BRK_HIGH,
};
typedef struct _pyb_timer_channel_obj_t {
mp_obj_base_t base;
struct _pyb_timer_obj_t *timer;
uint8_t channel;
uint8_t mode;
mp_obj_t callback;
struct _pyb_timer_channel_obj_t *next;
} pyb_timer_channel_obj_t;
typedef struct _pyb_timer_obj_t {
mp_obj_base_t base;
uint8_t tim_id;
uint8_t is_32bit;
mp_obj_t callback;
TIM_HandleTypeDef tim;
IRQn_Type irqn;
pyb_timer_channel_obj_t *channel;
} pyb_timer_obj_t;
// The following yields TIM_IT_UPDATE when channel is zero and
// TIM_IT_CC1..TIM_IT_CC4 when channel is 1..4
#define TIMER_IRQ_MASK(channel) (1 << (channel))
#define TIMER_CNT_MASK(self) ((self)->is_32bit ? 0xffffffff : 0xffff)
#define TIMER_CHANNEL(self) ((((self)->channel) - 1) << 2)
TIM_HandleTypeDef TIM5_Handle;
TIM_HandleTypeDef TIM6_Handle;
#define PYB_TIMER_OBJ_ALL_NUM MP_ARRAY_SIZE(MP_STATE_PORT(pyb_timer_obj_all))
static mp_obj_t pyb_timer_deinit(mp_obj_t self_in);
static mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback);
static mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback);
void timer_init0(void) {
for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
MP_STATE_PORT(pyb_timer_obj_all)[i] = NULL;
}
}
// unregister all interrupt sources
void timer_deinit(void) {
for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
pyb_timer_obj_t *tim = MP_STATE_PORT(pyb_timer_obj_all)[i];
if (tim != NULL) {
pyb_timer_deinit(MP_OBJ_FROM_PTR(tim));
}
}
}
#if defined(TIM5)
// TIM5 is set-up for the servo controller
// This function inits but does not start the timer
void timer_tim5_init(void) {
// TIM5 clock enable
__HAL_RCC_TIM5_CLK_ENABLE();
// set up and enable interrupt
NVIC_SetPriority(TIM5_IRQn, IRQ_PRI_TIM5);
HAL_NVIC_EnableIRQ(TIM5_IRQn);
// PWM clock configuration
TIM5_Handle.Instance = TIM5;
TIM5_Handle.Init.Period = 2000 - 1; // timer cycles at 50Hz
TIM5_Handle.Init.Prescaler = (timer_get_source_freq(5) / 100000) - 1; // timer runs at 100kHz
TIM5_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
HAL_TIM_PWM_Init(&TIM5_Handle);
}
#endif
#if defined(TIM6)
// Init TIM6 with a counter-overflow at the given frequency (given in Hz)
// TIM6 is used by the DAC and ADC for auto sampling at a given frequency
// This function inits but does not start the timer
TIM_HandleTypeDef *timer_tim6_init(uint freq) {
// TIM6 clock enable
__HAL_RCC_TIM6_CLK_ENABLE();
// Timer runs at SystemCoreClock / 2
// Compute the prescaler value so TIM6 triggers at freq-Hz
uint32_t period = MAX(1, timer_get_source_freq(6) / freq);
uint32_t prescaler = 1;
while (period > 0xffff) {
period >>= 1;
prescaler <<= 1;
}
// Time base clock configuration
TIM6_Handle.Instance = TIM6;
TIM6_Handle.Init.Period = period - 1;
TIM6_Handle.Init.Prescaler = prescaler - 1;
TIM6_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // unused for TIM6
TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6
HAL_TIM_Base_Init(&TIM6_Handle);
return &TIM6_Handle;
}
#endif
// Interrupt dispatch
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
#if MICROPY_HW_ENABLE_SERVO
if (htim == &TIM5_Handle) {
servo_timer_irq_callback();
}
#endif
}
// Get the frequency (in Hz) of the source clock for the given timer.
// On STM32F405/407/415/417 there are 2 cases for how the clock freq is set.
// If the APB prescaler is 1, then the timer clock is equal to its respective
// APB clock. Otherwise (APB prescaler > 1) the timer clock is twice its
// respective APB clock. See DM00031020 Rev 4, page 115.
uint32_t timer_get_source_freq(uint32_t tim_id) {
#if defined(STM32H5)
uint32_t source, ppre;
if ((2 <= tim_id && tim_id <= 7) || (12 <= tim_id && tim_id <= 14)) {
// TIM{2-7,12-14} are on APB1
source = HAL_RCC_GetPCLK1Freq();
ppre = (RCC->CFGR2 >> RCC_CFGR2_PPRE1_Pos) & 7;
} else {
// TIM{1,8,15-17} are on APB2
source = HAL_RCC_GetPCLK2Freq();
ppre = (RCC->CFGR2 >> RCC_CFGR2_PPRE2_Pos) & 7;
}
if (RCC->CFGR1 & RCC_CFGR1_TIMPRE) {
if (ppre == 0 || ppre == 4 || ppre == 5) {
// PPREx divider is 1, 2 or 4.
return 2 * source;
} else {
return 4 * source;
}
} else {
if (ppre == 0 || ppre == 4) {
// PPREx divider is 1 or 2.
return HAL_RCC_GetHCLKFreq();
} else {
return 2 * source;
}
}
#else
uint32_t source, clk_div;
if (tim_id == 1 || (8 <= tim_id && tim_id <= 11)) {
// TIM{1,8,9,10,11} are on APB2
#if defined(STM32F0) || defined(STM32G0)
source = HAL_RCC_GetPCLK1Freq();
clk_div = RCC->CFGR & RCC_CFGR_PPRE;
#elif defined(STM32H7A3xx) || defined(STM32H7A3xxQ) || defined(STM32H7B3xx) || defined(STM32H7B3xxQ)
source = HAL_RCC_GetPCLK2Freq();
clk_div = RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE2;
#elif defined(STM32H7)
source = HAL_RCC_GetPCLK2Freq();
clk_div = RCC->D2CFGR & RCC_D2CFGR_D2PPRE2;
#else
source = HAL_RCC_GetPCLK2Freq();
clk_div = RCC->CFGR & RCC_CFGR_PPRE2;
#endif
} else {
// TIM{2,3,4,5,6,7,12,13,14} are on APB1
source = HAL_RCC_GetPCLK1Freq();
#if defined(STM32F0) || defined(STM32G0)
clk_div = RCC->CFGR & RCC_CFGR_PPRE;
#elif defined(STM32H7A3xx) || defined(STM32H7A3xxQ) || defined(STM32H7B3xx) || defined(STM32H7B3xxQ)
clk_div = RCC->CDCFGR1 & RCC_CDCFGR2_CDPPRE1;
#elif defined(STM32H7)
clk_div = RCC->D2CFGR & RCC_D2CFGR_D2PPRE1;
#else
clk_div = RCC->CFGR & RCC_CFGR_PPRE1;
#endif
}
if (clk_div != 0) {
// APB prescaler for this timer is > 1
source *= 2;
}
return source;
#endif
}
/******************************************************************************/
/* MicroPython bindings */
static const mp_obj_type_t pyb_timer_channel_type;
// This is the largest value that we can multiply by 100 and have the result
// fit in a uint32_t.
#define MAX_PERIOD_DIV_100 42949672
// computes prescaler and period so TIM triggers at freq-Hz
static uint32_t compute_prescaler_period_from_freq(pyb_timer_obj_t *self, mp_obj_t freq_in, uint32_t *period_out) {
uint32_t source_freq = timer_get_source_freq(self->tim_id);
uint32_t prescaler = 1;
uint32_t period;
if (0) {
#if MICROPY_PY_BUILTINS_FLOAT
} else if (mp_obj_is_type(freq_in, &mp_type_float)) {
float freq = mp_obj_get_float_to_f(freq_in);
if (freq <= 0) {
goto bad_freq;
}
while (freq < 1 && prescaler < 6553) {
prescaler *= 10;
freq *= 10.0f;
}
period = (uint32_t)((float)source_freq / freq);
#endif
} else {
mp_int_t freq = mp_obj_get_int(freq_in);
if (freq <= 0) {
goto bad_freq;
bad_freq:
mp_raise_ValueError(MP_ERROR_TEXT("must have positive freq"));
}
period = source_freq / freq;
}
period = MAX(1, period);
while (period > TIMER_CNT_MASK(self)) {
// if we can divide exactly, do that first
if (period % 5 == 0) {
prescaler *= 5;
period /= 5;
} else if (period % 3 == 0) {
prescaler *= 3;
period /= 3;
} else {
// may not divide exactly, but loses minimal precision
prescaler <<= 1;
period >>= 1;
}
}
*period_out = (period - 1) & TIMER_CNT_MASK(self);
return (prescaler - 1) & 0xffff;
}
// computes prescaler and period so TIM triggers with a period of t_num/t_den seconds
static uint32_t compute_prescaler_period_from_t(pyb_timer_obj_t *self, int32_t t_num, int32_t t_den, uint32_t *period_out) {
uint32_t source_freq = timer_get_source_freq(self->tim_id);
if (t_num <= 0 || t_den <= 0) {
mp_raise_ValueError(MP_ERROR_TEXT("must have positive freq"));
}
uint64_t period = (uint64_t)source_freq * (uint64_t)t_num / (uint64_t)t_den;
uint32_t prescaler = 1;
while (period > TIMER_CNT_MASK(self)) {
// if we can divide exactly, and without prescaler overflow, do that first
if (prescaler <= 13107 && period % 5 == 0) {
prescaler *= 5;
period /= 5;
} else if (prescaler <= 21845 && period % 3 == 0) {
prescaler *= 3;
period /= 3;
} else {
// may not divide exactly, but loses minimal precision
uint32_t period_lsb = period & 1;
prescaler <<= 1;
period >>= 1;
if (period < prescaler) {
// round division up
prescaler |= period_lsb;
}
if (prescaler > 0x10000) {
mp_raise_ValueError(MP_ERROR_TEXT("period too large"));
}
}
}
*period_out = (period - 1) & TIMER_CNT_MASK(self);
return (prescaler - 1) & 0xffff;
}
// Helper function for determining the period used for calculating percent
static uint32_t compute_period(pyb_timer_obj_t *self) {
// In center mode, compare == period corresponds to 100%
// In edge mode, compare == (period + 1) corresponds to 100%
uint32_t period = (__HAL_TIM_GET_AUTORELOAD(&self->tim) & TIMER_CNT_MASK(self));
if (period != 0xffffffff) {
if (self->tim.Init.CounterMode == TIM_COUNTERMODE_UP ||
self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN) {
// Edge mode
period++;
}
}
return period;
}
// Helper function to compute PWM value from timer period and percent value.
// 'percent_in' can be an int or a float between 0 and 100 (out of range
// values are clamped).
static uint32_t compute_pwm_value_from_percent(uint32_t period, mp_obj_t percent_in) {
uint32_t cmp;
if (0) {
#if MICROPY_PY_BUILTINS_FLOAT
} else if (mp_obj_is_type(percent_in, &mp_type_float)) {
mp_float_t percent = mp_obj_get_float(percent_in);
if (percent <= 0.0) {
cmp = 0;
} else if (percent >= 100.0) {
cmp = period;
} else {
cmp = (uint32_t)(percent / MICROPY_FLOAT_CONST(100.0) * ((mp_float_t)period));
}
#endif
} else {
// For integer arithmetic, if period is large and 100*period will
// overflow, then divide period before multiplying by cmp. Otherwise
// do it the other way round to retain precision.
mp_int_t percent = mp_obj_get_int(percent_in);
if (percent <= 0) {
cmp = 0;
} else if (percent >= 100) {
cmp = period;
} else if (period > MAX_PERIOD_DIV_100) {
cmp = (uint32_t)percent * (period / 100);
} else {
cmp = ((uint32_t)percent * period) / 100;
}
}
return cmp;
}
// Helper function to compute percentage from timer perion and PWM value.
static mp_obj_t compute_percent_from_pwm_value(uint32_t period, uint32_t cmp) {
#if MICROPY_PY_BUILTINS_FLOAT
mp_float_t percent;
if (cmp >= period) {
percent = 100.0;
} else {
percent = (mp_float_t)cmp * 100.0 / ((mp_float_t)period);
}
return mp_obj_new_float(percent);
#else
mp_int_t percent;
if (cmp >= period) {
percent = 100;
} else if (cmp > MAX_PERIOD_DIV_100) {
percent = cmp / (period / 100);
} else {
percent = cmp * 100 / period;
}
return mp_obj_new_int(percent);
#endif
}
#if !defined(STM32L0) && !defined(STM32L1)
// Computes the 8-bit value for the DTG field in the BDTR register.
//
// 1 tick = 1 count of the timer's clock (source_freq) divided by div.
// 0-128 ticks in increments of 1
// 128-256 ticks in increments of 2
// 256-512 ticks in increments of 8
// 512-1008 ticks in increments of 16
static uint32_t compute_dtg_from_ticks(mp_int_t ticks) {
if (ticks <= 0) {
return 0;
}
if (ticks < 128) {
return ticks;
}
if (ticks < 256) {
return 0x80 | ((ticks - 128) / 2);
}
if (ticks < 512) {
return 0xC0 | ((ticks - 256) / 8);
}
if (ticks < 1008) {
return 0xE0 | ((ticks - 512) / 16);
}
return 0xFF;
}
// Given the 8-bit value stored in the DTG field of the BDTR register, compute
// the number of ticks.
static mp_int_t compute_ticks_from_dtg(uint32_t dtg) {
if ((dtg & 0x80) == 0) {
return dtg & 0x7F;
}
if ((dtg & 0xC0) == 0x80) {
return 128 + ((dtg & 0x3F) * 2);
}
if ((dtg & 0xE0) == 0xC0) {
return 256 + ((dtg & 0x1F) * 8);
}
return 512 + ((dtg & 0x1F) * 16);
}
static void config_deadtime(pyb_timer_obj_t *self, mp_int_t ticks, mp_int_t brk) {
TIM_BreakDeadTimeConfigTypeDef deadTimeConfig = {0};
deadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
deadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
deadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
deadTimeConfig.DeadTime = compute_dtg_from_ticks(ticks);
deadTimeConfig.BreakState = brk == BRK_OFF ? TIM_BREAK_DISABLE : TIM_BREAK_ENABLE;
deadTimeConfig.BreakPolarity = brk == BRK_LOW ? TIM_BREAKPOLARITY_LOW : TIM_BREAKPOLARITY_HIGH;
#if defined(STM32F7) || defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L4) || defined(STM32WB)
deadTimeConfig.BreakFilter = 0;
deadTimeConfig.Break2State = TIM_BREAK_DISABLE;
deadTimeConfig.Break2Polarity = TIM_BREAKPOLARITY_LOW;
deadTimeConfig.Break2Filter = 0;
#endif
deadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
HAL_TIMEx_ConfigBreakDeadTime(&self->tim, &deadTimeConfig);
}
#endif
TIM_HandleTypeDef *pyb_timer_get_handle(mp_obj_t timer) {
if (mp_obj_get_type(timer) != &pyb_timer_type) {
mp_raise_ValueError(MP_ERROR_TEXT("need a Timer object"));
}
pyb_timer_obj_t *self = MP_OBJ_TO_PTR(timer);
return &self->tim;
}
static void pyb_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_timer_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->tim.State == HAL_TIM_STATE_RESET) {
mp_printf(print, "Timer(%u)", self->tim_id);
} else {
uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
uint32_t period = __HAL_TIM_GET_AUTORELOAD(&self->tim) & TIMER_CNT_MASK(self);
// for efficiency, we compute and print freq as an int (not a float)
uint32_t freq = timer_get_source_freq(self->tim_id) / ((prescaler + 1) * (period + 1));
mp_printf(print, "Timer(%u, freq=%u, prescaler=%u, period=%u, mode=%s, div=%u",
self->tim_id,
freq,
prescaler,
period,
self->tim.Init.CounterMode == TIM_COUNTERMODE_UP ? "UP" :
self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN ? "DOWN" : "CENTER",
self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV4 ? 4 :
self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV2 ? 2 : 1);
#if !defined(STM32L0) && !defined(STM32L1)
#if defined(IS_TIM_ADVANCED_INSTANCE)
if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance))
#elif defined(IS_TIM_BREAK_INSTANCE)
if (IS_TIM_BREAK_INSTANCE(self->tim.Instance))
#else
if (0)
#endif
{
mp_printf(print, ", deadtime=%u",
compute_ticks_from_dtg(self->tim.Instance->BDTR & TIM_BDTR_DTG));
if ((self->tim.Instance->BDTR & TIM_BDTR_BKE) == TIM_BDTR_BKE) {
mp_printf(print, ", brk=%s",
((self->tim.Instance->BDTR & TIM_BDTR_BKP) == TIM_BDTR_BKP) ? "BRK_HIGH" : "BRK_LOW");
} else {
mp_printf(print, ", brk=BRK_OFF");
}
}
#endif
mp_print_str(print, ")");
}
}
/// \method init(*, freq, prescaler, period)
/// Initialise the timer. Initialisation must be either by frequency (in Hz)
/// or by prescaler and period:
///
/// tim.init(freq=100) # set the timer to trigger at 100Hz
/// tim.init(prescaler=83, period=999) # set the prescaler and period directly
///
/// Keyword arguments:
///
/// - `freq` - specifies the periodic frequency of the timer. You might also
/// view this as the frequency with which the timer goes through
/// one complete cycle.
///
/// - `prescaler` [0-0xffff] - specifies the value to be loaded into the
/// timer's Prescaler Register (PSC). The timer clock source is divided by
/// (`prescaler + 1`) to arrive at the timer clock. Timers 2-7 and 12-14
/// have a clock source of 84 MHz (pyb.freq()[2] * 2), and Timers 1, and 8-11
/// have a clock source of 168 MHz (pyb.freq()[3] * 2).
///
/// - `period` [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5.
/// Specifies the value to be loaded into the timer's AutoReload
/// Register (ARR). This determines the period of the timer (i.e. when the
/// counter cycles). The timer counter will roll-over after `period + 1`
/// timer clock cycles.
///
/// - `mode` can be one of:
/// - `Timer.UP` - configures the timer to count from 0 to ARR (default)
/// - `Timer.DOWN` - configures the timer to count from ARR down to 0.
/// - `Timer.CENTER` - configures the timer to count from 0 to ARR and
/// then back down to 0.
///
/// - `div` can be one of 1, 2, or 4. Divides the timer clock to determine
/// the sampling clock used by the digital filters.
///
/// - `callback` - as per Timer.callback()
///
/// - `deadtime` - specifies the amount of "dead" or inactive time between
/// transitions on complimentary channels (both channels will be inactive)
/// for this time). `deadtime` may be an integer between 0 and 1008, with
/// the following restrictions: 0-128 in steps of 1. 128-256 in steps of
/// 2, 256-512 in steps of 8, and 512-1008 in steps of 16. `deadime`
/// measures ticks of `source_freq` divided by `div` clock ticks.
/// `deadtime` is only available on timers 1 and 8.
///
/// - `brk` - specifies if the break mode is used to kill the output of
/// the PWM when the BRK_IN input is asserted. The polarity set how the
/// BRK_IN input is triggered. It can be set to `BRK_OFF`, `BRK_LOW`
/// and `BRK_HIGH`.
///
///
/// You must either specify freq or both of period and prescaler.
static mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_freq, ARG_prescaler, ARG_period, ARG_tick_hz, ARG_mode, ARG_div, ARG_callback, ARG_deadtime, ARG_brk };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_prescaler, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
{ MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
{ MP_QSTR_tick_hz, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} },
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_COUNTERMODE_UP} },
{ MP_QSTR_div, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_deadtime, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_brk, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = BRK_OFF} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// set the TIM configuration values
TIM_Base_InitTypeDef *init = &self->tim.Init;
if (args[ARG_freq].u_obj != mp_const_none) {
// set prescaler and period from desired frequency
init->Prescaler = compute_prescaler_period_from_freq(self, args[ARG_freq].u_obj, &init->Period);
} else if (args[ARG_prescaler].u_int != 0xffffffff && args[ARG_period].u_int != 0xffffffff) {
// set prescaler and period directly
init->Prescaler = args[ARG_prescaler].u_int;
init->Period = args[ARG_period].u_int;
} else if (args[ARG_period].u_int != 0xffffffff) {
// set prescaler and period from desired period and tick_hz scale
init->Prescaler = compute_prescaler_period_from_t(self, args[ARG_period].u_int, args[ARG_tick_hz].u_int, &init->Period);
} else {
mp_raise_TypeError(MP_ERROR_TEXT("must specify either freq, period, or prescaler and period"));
}
init->CounterMode = args[ARG_mode].u_int;
if (!IS_TIM_COUNTER_MODE(init->CounterMode)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid mode (%d)"), init->CounterMode);
}
init->ClockDivision = args[ARG_div].u_int == 2 ? TIM_CLOCKDIVISION_DIV2 :
args[ARG_div].u_int == 4 ? TIM_CLOCKDIVISION_DIV4 :
TIM_CLOCKDIVISION_DIV1;
#if !defined(STM32L0) && !defined(STM32L1)
init->RepetitionCounter = 0;
#endif
// enable TIM clock
switch (self->tim_id) {
#if defined(TIM1)
case 1:
__HAL_RCC_TIM1_CLK_ENABLE();
break;
#endif
case 2:
__HAL_RCC_TIM2_CLK_ENABLE();
break;
#if defined(TIM3)
case 3:
__HAL_RCC_TIM3_CLK_ENABLE();
break;
#endif
#if defined(TIM4)
case 4:
__HAL_RCC_TIM4_CLK_ENABLE();
break;
#endif
#if defined(TIM5)
case 5:
__HAL_RCC_TIM5_CLK_ENABLE();
break;
#endif
#if defined(TIM6)
case 6:
__HAL_RCC_TIM6_CLK_ENABLE();
break;
#endif
#if defined(TIM7)
case 7:
__HAL_RCC_TIM7_CLK_ENABLE();
break;
#endif
#if defined(TIM8)
case 8:
__HAL_RCC_TIM8_CLK_ENABLE();
break;
#endif
#if defined(TIM9)
case 9:
__HAL_RCC_TIM9_CLK_ENABLE();
break;
#endif
#if defined(TIM10)
case 10:
__HAL_RCC_TIM10_CLK_ENABLE();
break;
#endif
#if defined(TIM11)
case 11:
__HAL_RCC_TIM11_CLK_ENABLE();
break;
#endif
#if defined(TIM12)
case 12:
__HAL_RCC_TIM12_CLK_ENABLE();
break;
#endif
#if defined(TIM13)
case 13:
__HAL_RCC_TIM13_CLK_ENABLE();
break;
#endif
#if defined(TIM14)
case 14:
__HAL_RCC_TIM14_CLK_ENABLE();
break;
#endif
#if defined(TIM15)
case 15:
__HAL_RCC_TIM15_CLK_ENABLE();
break;
#endif
#if defined(TIM16)
case 16:
__HAL_RCC_TIM16_CLK_ENABLE();
break;
#endif
#if defined(TIM17)
case 17:
__HAL_RCC_TIM17_CLK_ENABLE();
break;
#endif
#if defined(TIM18)
case 18:
__HAL_RCC_TIM18_CLK_ENABLE();
break;
#endif
#if defined(TIM19)
case 19:
__HAL_RCC_TIM19_CLK_ENABLE();
break;
#endif
#if defined(TIM20)
case 20:
__HAL_RCC_TIM20_CLK_ENABLE();
break;
#endif
#if defined(TIM21)
case 21:
__HAL_RCC_TIM21_CLK_ENABLE();
break;
#endif
#if defined(TIM22)
case 22:
__HAL_RCC_TIM22_CLK_ENABLE();
break;
#endif
}
// set IRQ priority (if not a special timer)
if (self->tim_id != 5) {
NVIC_SetPriority(IRQn_NONNEG(self->irqn), IRQ_PRI_TIMX);
if (self->tim_id == 1) {
#if defined(TIM1)
NVIC_SetPriority(TIM1_CC_IRQn, IRQ_PRI_TIMX);
#endif
} else if (self->tim_id == 8) {
#if defined(TIM8)
NVIC_SetPriority(TIM8_CC_IRQn, IRQ_PRI_TIMX);
#endif
}
}
// init TIM
HAL_TIM_Base_Init(&self->tim);
#if !defined(STM32L0) && !defined(STM32L1)
#if defined(IS_TIM_ADVANCED_INSTANCE)
if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance))
#elif defined(IS_TIM_BREAK_INSTANCE)
if (IS_TIM_BREAK_INSTANCE(self->tim.Instance))
#else
if (0)
#endif
{
config_deadtime(self, args[ARG_deadtime].u_int, args[ARG_brk].u_int);
}
#endif
// Enable ARPE so that the auto-reload register is buffered.
// This allows to smoothly change the frequency of the timer.
self->tim.Instance->CR1 |= TIM_CR1_ARPE;
// Start the timer running
if (args[ARG_callback].u_obj == mp_const_none) {
HAL_TIM_Base_Start(&self->tim);
} else {
pyb_timer_callback(MP_OBJ_FROM_PTR(self), args[ARG_callback].u_obj);
}
return mp_const_none;
}
// This table encodes the timer instance and irq number (for the update irq).
// It assumes that timer instance pointer has the lower 8 bits cleared.
#define TIM_ENTRY(id, irq) [id - 1] = (uint32_t)TIM##id | irq
static const uint32_t tim_instance_table[MICROPY_HW_MAX_TIMER] = {
#if defined(TIM1)
#if defined(STM32F0) || defined(STM32G0)
TIM_ENTRY(1, TIM1_BRK_UP_TRG_COM_IRQn),
#elif defined(STM32F4) || defined(STM32F7)
TIM_ENTRY(1, TIM1_UP_TIM10_IRQn),
#elif defined(STM32H7)
TIM_ENTRY(1, TIM1_UP_IRQn),
#elif defined(STM32G4) || defined(STM32L4) || defined(STM32WB)
TIM_ENTRY(1, TIM1_UP_TIM16_IRQn),
#endif
#endif
TIM_ENTRY(2, TIM2_IRQn),
#if defined(TIM3)
#if defined(STM32G0B1xx) || defined(STM32G0C1xx)
TIM_ENTRY(3, TIM3_TIM4_IRQn),
#else
TIM_ENTRY(3, TIM3_IRQn),
#endif
#endif
#if defined(TIM4)
#if defined(STM32G0B1xx) || defined(STM32G0C1xx)
TIM_ENTRY(3, TIM3_TIM4_IRQn),
#else
TIM_ENTRY(4, TIM4_IRQn),
#endif
#endif
#if defined(TIM5)
TIM_ENTRY(5, TIM5_IRQn),
#endif
#if defined(TIM6)
#if defined(STM32F412Zx) || defined(STM32L1)
TIM_ENTRY(6, TIM6_IRQn),
#elif defined(STM32G0)
TIM_ENTRY(6, TIM6_DAC_LPTIM1_IRQn),
#elif defined(STM32H5)
TIM_ENTRY(6, TIM6_IRQn),
#else
TIM_ENTRY(6, TIM6_DAC_IRQn),
#endif
#endif
#if defined(TIM7)
#if defined(STM32G0)
TIM_ENTRY(7, TIM7_LPTIM2_IRQn),
#elif defined(STM32G4)
TIM_ENTRY(7, TIM7_DAC_IRQn),
#else
TIM_ENTRY(7, TIM7_IRQn),
#endif
#endif
#if defined(TIM8)
#if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
TIM_ENTRY(8, TIM8_UP_TIM13_IRQn),
#else
TIM_ENTRY(8, TIM8_UP_IRQn),
#endif
#endif
#if defined(TIM9)
#if defined(STM32L1)
TIM_ENTRY(9, TIM9_IRQn),
#else
TIM_ENTRY(9, TIM1_BRK_TIM9_IRQn),
#endif
#endif
#if defined(TIM10)
#if defined(STM32L1)
TIM_ENTRY(10, TIM10_IRQn),
#else
TIM_ENTRY(10, TIM1_UP_TIM10_IRQn),
#endif
#endif
#if defined(TIM11)
#if defined(STM32L1)
TIM_ENTRY(11, TIM11_IRQn),
#else
TIM_ENTRY(11, TIM1_TRG_COM_TIM11_IRQn),
#endif
#endif
#if defined(TIM12)
#if defined(STM32H5)
TIM_ENTRY(12, TIM12_IRQn),
#else
TIM_ENTRY(12, TIM8_BRK_TIM12_IRQn),
#endif
#endif
#if defined(TIM13)
#if defined(STM32H5)
TIM_ENTRY(13, TIM13_IRQn),
#else
TIM_ENTRY(13, TIM8_UP_TIM13_IRQn),
#endif
#endif
#if defined(STM32F0) || defined(STM32G0) || defined(STM32H5)
TIM_ENTRY(14, TIM14_IRQn),
#elif defined(TIM14)
TIM_ENTRY(14, TIM8_TRG_COM_TIM14_IRQn),
#endif
#if defined(TIM15)
#if defined(STM32F0) || defined(STM32G0) || defined(STM32H5) || defined(STM32H7)
TIM_ENTRY(15, TIM15_IRQn),
#else
TIM_ENTRY(15, TIM1_BRK_TIM15_IRQn),
#endif
#endif
#if defined(TIM16)
#if defined(STM32G0B1xx) || defined(STM32G0C1xx)
TIM_ENTRY(16, TIM16_FDCAN_IT0_IRQn),
#elif defined(STM32F0) || defined(STM32G0) || defined(STM32H5) || defined(STM32H7) || defined(STM32WL)
TIM_ENTRY(16, TIM16_IRQn),
#else
TIM_ENTRY(16, TIM1_UP_TIM16_IRQn),
#endif
#endif
#if defined(TIM17)
#if defined(STM32G0B1xx) || defined(STM32G0C1xx)
TIM_ENTRY(17, TIM17_FDCAN_IT1_IRQn),
#elif defined(STM32F0) || defined(STM32G0) || defined(STM32H5) || defined(STM32H7) || defined(STM32WL)
TIM_ENTRY(17, TIM17_IRQn),
#else
TIM_ENTRY(17, TIM1_TRG_COM_TIM17_IRQn),
#endif
#endif
#if defined(TIM20)
TIM_ENTRY(20, TIM20_UP_IRQn),
#endif
};
#undef TIM_ENTRY
/// \classmethod \constructor(id, ...)
/// Construct a new timer object of the given id. If additional
/// arguments are given, then the timer is initialised by `init(...)`.
/// `id` can be 1 to 14, excluding 3.
static mp_obj_t pyb_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// get the timer id
mp_int_t tim_id = mp_obj_get_int(args[0]);
// check if the timer exists
if (tim_id <= 0 || tim_id > MICROPY_HW_MAX_TIMER || tim_instance_table[tim_id - 1] == 0) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Timer(%d) doesn't exist"), tim_id);
}
// check if the timer is reserved for system use or not
if (MICROPY_HW_TIM_IS_RESERVED(tim_id)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Timer(%d) is reserved"), tim_id);
}
pyb_timer_obj_t *tim;
if (MP_STATE_PORT(pyb_timer_obj_all)[tim_id - 1] == NULL) {
// create new Timer object
tim = m_new_obj(pyb_timer_obj_t);
memset(tim, 0, sizeof(*tim));
tim->base.type = &pyb_timer_type;
tim->tim_id = tim_id;
#if defined(STM32L1)
tim->is_32bit = tim_id == 5;
#else
tim->is_32bit = tim_id == 2 || tim_id == 5;
#endif
tim->callback = mp_const_none;
uint32_t ti = tim_instance_table[tim_id - 1];
tim->tim.Instance = (TIM_TypeDef *)(ti & 0xffffff00);
tim->irqn = ti & 0xff;
MP_STATE_PORT(pyb_timer_obj_all)[tim_id - 1] = tim;
} else {
// reference existing Timer object
tim = MP_STATE_PORT(pyb_timer_obj_all)[tim_id - 1];
}
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args);
}
return MP_OBJ_FROM_PTR(tim);
}
static mp_obj_t pyb_timer_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_timer_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
}
static MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);
// timer.deinit()
static mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
pyb_timer_obj_t *self = MP_OBJ_TO_PTR(self_in);
// Disable the base interrupt
pyb_timer_callback(self_in, mp_const_none);
pyb_timer_channel_obj_t *chan = self->channel;
self->channel = NULL;
// Disable the channel interrupts
while (chan != NULL) {
pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), mp_const_none);
pyb_timer_channel_obj_t *prev_chan = chan;
chan = chan->next;
prev_chan->next = NULL;
}
self->tim.State = HAL_TIM_STATE_RESET;
self->tim.Instance->CCER = 0x0000; // disable all capture/compare outputs
self->tim.Instance->CR1 = 0x0000; // disable the timer and reset its state
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);
/// \method channel(channel, mode, ...)
///
/// If only a channel number is passed, then a previously initialized channel
/// object is returned (or `None` if there is no previous channel).
///
/// Otherwise, a TimerChannel object is initialized and returned.
///
/// Each channel can be configured to perform pwm, output compare, or
/// input capture. All channels share the same underlying timer, which means
/// that they share the same timer clock.
///
/// Keyword arguments:
///
/// - `mode` can be one of:
/// - `Timer.PWM` - configure the timer in PWM mode (active high).
/// - `Timer.PWM_INVERTED` - configure the timer in PWM mode (active low).
/// - `Timer.OC_TIMING` - indicates that no pin is driven.
/// - `Timer.OC_ACTIVE` - the pin will be made active when a compare
/// match occurs (active is determined by polarity)
/// - `Timer.OC_INACTIVE` - the pin will be made inactive when a compare
/// match occurs.
/// - `Timer.OC_TOGGLE` - the pin will be toggled when an compare match occurs.
/// - `Timer.OC_FORCED_ACTIVE` - the pin is forced active (compare match is ignored).
/// - `Timer.OC_FORCED_INACTIVE` - the pin is forced inactive (compare match is ignored).
/// - `Timer.IC` - configure the timer in Input Capture mode.
/// - `Timer.ENC_A` --- configure the timer in Encoder mode. The counter only changes when CH1 changes.
/// - `Timer.ENC_B` --- configure the timer in Encoder mode. The counter only changes when CH2 changes.
/// - `Timer.ENC_AB` --- configure the timer in Encoder mode. The counter changes when CH1 or CH2 changes.
///
/// - `callback` - as per TimerChannel.callback()
///
/// - `pin` None (the default) or a Pin object. If specified (and not None)
/// this will cause the alternate function of the the indicated pin
/// to be configured for this timer channel. An error will be raised if
/// the pin doesn't support any alternate functions for this timer channel.
///
/// Keyword arguments for Timer.PWM modes:
///
/// - `pulse_width` - determines the initial pulse width value to use.
/// - `pulse_width_percent` - determines the initial pulse width percentage to use.
///
/// Keyword arguments for Timer.OC modes:
///
/// - `compare` - determines the initial value of the compare register.
///
/// - `polarity` can be one of:
/// - `Timer.HIGH` - output is active high
/// - `Timer.LOW` - output is active low
///
/// Optional keyword arguments for Timer.IC modes:
///
/// - `polarity` can be one of:
/// - `Timer.RISING` - captures on rising edge.
/// - `Timer.FALLING` - captures on falling edge.
/// - `Timer.BOTH` - captures on both edges.
///
/// Note that capture only works on the primary channel, and not on the
/// complimentary channels.
///
/// Notes for Timer.ENC modes:
///
/// - Requires 2 pins, so one or both pins will need to be configured to use
/// the appropriate timer AF using the Pin API.
/// - Read the encoder value using the timer.counter() method.
/// - Only works on CH1 and CH2 (and not on CH1N or CH2N)
/// - The channel number is ignored when setting the encoder mode.
///
/// PWM Example:
///
/// timer = pyb.Timer(2, freq=1000)
/// ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=210000)
/// ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=420000)
static mp_obj_t pyb_timer_channel(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_pulse_width, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_pulse_width_percent, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_compare, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
};
pyb_timer_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_int_t channel = mp_obj_get_int(pos_args[1]);
if (channel < 1 || channel > 4) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid channel (%d)"), channel);
}
pyb_timer_channel_obj_t *chan = self->channel;
pyb_timer_channel_obj_t *prev_chan = NULL;
while (chan != NULL) {
if (chan->channel == channel) {
break;
}
prev_chan = chan;
chan = chan->next;
}
// If only the channel number is given return the previously allocated
// channel (or None if no previous channel).
if (n_args == 2 && kw_args->used == 0) {
if (chan) {
return MP_OBJ_FROM_PTR(chan);
}
return mp_const_none;
}
// If there was already a channel, then remove it from the list. Note that
// the order we do things here is important so as to appear atomic to
// the IRQ handler.
if (chan) {
// Turn off any IRQ associated with the channel.
pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), mp_const_none);
// Unlink the channel from the list.
if (prev_chan) {
prev_chan->next = chan->next;
}
self->channel = chan->next;
chan->next = NULL;
}
// Allocate and initialize a new channel
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
chan = m_new_obj(pyb_timer_channel_obj_t);
memset(chan, 0, sizeof(*chan));
chan->base.type = &pyb_timer_channel_type;
chan->timer = self;
chan->channel = channel;
chan->mode = args[0].u_int;
chan->callback = args[1].u_obj;
mp_obj_t pin_obj = args[2].u_obj;
if (pin_obj != mp_const_none) {
if (!mp_obj_is_type(pin_obj, &pin_type)) {
mp_raise_ValueError(MP_ERROR_TEXT("pin argument needs to be be a Pin type"));
}
const machine_pin_obj_t *pin = MP_OBJ_TO_PTR(pin_obj);
const pin_af_obj_t *af = pin_find_af(pin, AF_FN_TIM, self->tim_id);
if (af == NULL) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Pin(%q) doesn't have an alt for Timer(%d)"), pin->name, self->tim_id);
}
// pin.init(mode=AF_PP, alt=idx)
const mp_obj_t args2[6] = {
MP_OBJ_FROM_PTR(&pin_init_obj),
pin_obj,
MP_OBJ_NEW_QSTR(MP_QSTR_mode), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP),
MP_OBJ_NEW_QSTR(MP_QSTR_alt), MP_OBJ_NEW_SMALL_INT(af->idx)
};
mp_call_method_n_kw(0, 2, args2);
}
// Link the channel to the timer before we turn the channel on.
// Note that this needs to appear atomic to the IRQ handler (the write
// to self->channel is atomic, so we're good, but I thought I'd mention
// in case this was ever changed in the future).
chan->next = self->channel;
self->channel = chan;
switch (chan->mode) {
case CHANNEL_MODE_PWM_NORMAL:
case CHANNEL_MODE_PWM_INVERTED: {
TIM_OC_InitTypeDef oc_config;
oc_config.OCMode = channel_mode_info[chan->mode].oc_mode;
if (args[4].u_obj != mp_const_none) {
// pulse width percent given
uint32_t period = compute_period(self);
oc_config.Pulse = compute_pwm_value_from_percent(period, args[4].u_obj);
} else {
// use absolute pulse width value (defaults to 0 if nothing given)
oc_config.Pulse = args[3].u_int;
}
oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
oc_config.OCFastMode = TIM_OCFAST_DISABLE;
#if !defined(STM32L0) && !defined(STM32L1)
oc_config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
oc_config.OCIdleState = TIM_OCIDLESTATE_SET;
oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;
#endif
HAL_TIM_PWM_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
if (chan->callback == mp_const_none) {
HAL_TIM_PWM_Start(&self->tim, TIMER_CHANNEL(chan));
} else {
pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), chan->callback);
}
#if !defined(STM32L0) && !defined(STM32L1)
// Start the complimentary channel too (if its supported)
if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
HAL_TIMEx_PWMN_Start(&self->tim, TIMER_CHANNEL(chan));
}
#endif
break;
}
case CHANNEL_MODE_OC_TIMING:
case CHANNEL_MODE_OC_ACTIVE:
case CHANNEL_MODE_OC_INACTIVE:
case CHANNEL_MODE_OC_TOGGLE:
case CHANNEL_MODE_OC_FORCED_ACTIVE:
case CHANNEL_MODE_OC_FORCED_INACTIVE: {
TIM_OC_InitTypeDef oc_config;
oc_config.OCMode = channel_mode_info[chan->mode].oc_mode;
oc_config.Pulse = args[5].u_int;
oc_config.OCPolarity = args[6].u_int;
if (oc_config.OCPolarity == 0xffffffff) {
oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
}
oc_config.OCFastMode = TIM_OCFAST_DISABLE;
#if !defined(STM32L0) && !defined(STM32L1)
if (oc_config.OCPolarity == TIM_OCPOLARITY_HIGH) {
oc_config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
} else {
oc_config.OCNPolarity = TIM_OCNPOLARITY_LOW;
}
oc_config.OCIdleState = TIM_OCIDLESTATE_SET;
oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;
#endif
if (!IS_TIM_OC_POLARITY(oc_config.OCPolarity)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid polarity (%d)"), oc_config.OCPolarity);
}
HAL_TIM_OC_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
if (chan->callback == mp_const_none) {
HAL_TIM_OC_Start(&self->tim, TIMER_CHANNEL(chan));
} else {
pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), chan->callback);
}
#if !defined(STM32L0) && !defined(STM32L1)
// Start the complimentary channel too (if its supported)
if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
HAL_TIMEx_OCN_Start(&self->tim, TIMER_CHANNEL(chan));
}
#endif
break;
}
case CHANNEL_MODE_IC: {
TIM_IC_InitTypeDef ic_config;
ic_config.ICPolarity = args[6].u_int;
if (ic_config.ICPolarity == 0xffffffff) {
ic_config.ICPolarity = TIM_ICPOLARITY_RISING;
}
ic_config.ICSelection = TIM_ICSELECTION_DIRECTTI;
ic_config.ICPrescaler = TIM_ICPSC_DIV1;
ic_config.ICFilter = 0;
if (!IS_TIM_IC_POLARITY(ic_config.ICPolarity)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid polarity (%d)"), ic_config.ICPolarity);
}
HAL_TIM_IC_ConfigChannel(&self->tim, &ic_config, TIMER_CHANNEL(chan));
if (chan->callback == mp_const_none) {
HAL_TIM_IC_Start(&self->tim, TIMER_CHANNEL(chan));
} else {
pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), chan->callback);
}
break;
}
case CHANNEL_MODE_ENC_A:
case CHANNEL_MODE_ENC_B:
case CHANNEL_MODE_ENC_AB: {
TIM_Encoder_InitTypeDef enc_config;
enc_config.EncoderMode = channel_mode_info[chan->mode].oc_mode;
enc_config.IC1Polarity = args[6].u_int;
if (enc_config.IC1Polarity == 0xffffffff) {
enc_config.IC1Polarity = TIM_ICPOLARITY_RISING;
}
enc_config.IC2Polarity = enc_config.IC1Polarity;
enc_config.IC1Selection = TIM_ICSELECTION_DIRECTTI;
enc_config.IC2Selection = TIM_ICSELECTION_DIRECTTI;
enc_config.IC1Prescaler = TIM_ICPSC_DIV1;
enc_config.IC2Prescaler = TIM_ICPSC_DIV1;
enc_config.IC1Filter = 0;
enc_config.IC2Filter = 0;
if (!IS_TIM_IC_POLARITY(enc_config.IC1Polarity)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid polarity (%d)"), enc_config.IC1Polarity);
}
// Only Timers 1, 2, 3, 4, 5, and 8 support encoder mode
if (
#if defined(TIM1)
self->tim.Instance != TIM1
&&
#endif
self->tim.Instance != TIM2
#if defined(TIM3)
&& self->tim.Instance != TIM3
#endif
#if defined(TIM4)
&& self->tim.Instance != TIM4
#endif
#if defined(TIM5)
&& self->tim.Instance != TIM5
#endif
#if defined(TIM8)
&& self->tim.Instance != TIM8
#endif
) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("encoder not supported on timer %d"), self->tim_id);
}
// Disable & clear the timer interrupt so that we don't trigger
// an interrupt by initializing the timer.
__HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
HAL_TIM_Encoder_Init(&self->tim, &enc_config);
__HAL_TIM_SET_COUNTER(&self->tim, 0);
if (self->callback != mp_const_none) {
__HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE);
__HAL_TIM_ENABLE_IT(&self->tim, TIM_IT_UPDATE);
}
HAL_TIM_Encoder_Start(&self->tim, TIM_CHANNEL_ALL);
break;
}
default:
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid mode (%d)"), chan->mode);
}
return MP_OBJ_FROM_PTR(chan);
}
static MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel);
/// \method counter([value])
/// Get or set the timer counter.
static mp_obj_t pyb_timer_counter(size_t n_args, const mp_obj_t *args) {
pyb_timer_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (n_args == 1) {
// get
return mp_obj_new_int(self->tim.Instance->CNT);
} else {
// set
__HAL_TIM_SET_COUNTER(&self->tim, mp_obj_get_int(args[1]));
return mp_const_none;
}
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_timer_counter);
/// \method source_freq()
/// Get the frequency of the source of the timer.
static mp_obj_t pyb_timer_source_freq(mp_obj_t self_in) {
pyb_timer_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint32_t source_freq = timer_get_source_freq(self->tim_id);
return mp_obj_new_int(source_freq);
}
static MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_source_freq_obj, pyb_timer_source_freq);
/// \method freq([value])
/// Get or set the frequency for the timer (changes prescaler and period if set).
static mp_obj_t pyb_timer_freq(size_t n_args, const mp_obj_t *args) {
pyb_timer_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (n_args == 1) {
// get
uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
uint32_t period = __HAL_TIM_GET_AUTORELOAD(&self->tim) & TIMER_CNT_MASK(self);
uint32_t source_freq = timer_get_source_freq(self->tim_id);
uint32_t divide_a = prescaler + 1;
uint32_t divide_b = period + 1;
#if MICROPY_PY_BUILTINS_FLOAT
if (source_freq % divide_a != 0) {
return mp_obj_new_float((mp_float_t)source_freq / (mp_float_t)divide_a / (mp_float_t)divide_b);
}
source_freq /= divide_a;
if (source_freq % divide_b != 0) {
return mp_obj_new_float((mp_float_t)source_freq / (mp_float_t)divide_b);
} else {
return mp_obj_new_int(source_freq / divide_b);
}
#else
return mp_obj_new_int(source_freq / divide_a / divide_b);
#endif
} else {
// set
uint32_t period;
uint32_t prescaler = compute_prescaler_period_from_freq(self, args[1], &period);
self->tim.Instance->PSC = prescaler;
__HAL_TIM_SET_AUTORELOAD(&self->tim, period);
return mp_const_none;
}
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_freq_obj, 1, 2, pyb_timer_freq);
/// \method prescaler([value])
/// Get or set the prescaler for the timer.
static mp_obj_t pyb_timer_prescaler(size_t n_args, const mp_obj_t *args) {
pyb_timer_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (n_args == 1) {
// get
return mp_obj_new_int(self->tim.Instance->PSC & 0xffff);
} else {
// set
self->tim.Instance->PSC = mp_obj_get_int(args[1]) & 0xffff;
return mp_const_none;
}
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_timer_prescaler);
/// \method period([value])
/// Get or set the period of the timer.
static mp_obj_t pyb_timer_period(size_t n_args, const mp_obj_t *args) {
pyb_timer_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (n_args == 1) {
// get
return mp_obj_new_int(__HAL_TIM_GET_AUTORELOAD(&self->tim) & TIMER_CNT_MASK(self));
} else {
// set
__HAL_TIM_SET_AUTORELOAD(&self->tim, mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self));
return mp_const_none;
}
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_period_obj, 1, 2, pyb_timer_period);
/// \method callback(fun)
/// Set the function to be called when the timer triggers.
/// `fun` is passed 1 argument, the timer object.
/// If `fun` is `None` then the callback will be disabled.
static mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback) {
pyb_timer_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (callback == mp_const_none) {
// stop interrupt (but not timer)
__HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
self->callback = mp_const_none;
} else if (mp_obj_is_callable(callback)) {
__HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
self->callback = callback;
// start timer, so that it interrupts on overflow, but clear any
// pending interrupts which may have been set by initializing it.
__HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE);
HAL_TIM_Base_Stop(&self->tim); // internal timer state must be released before starting again
HAL_TIM_Base_Start_IT(&self->tim); // This will re-enable the IRQ
HAL_NVIC_EnableIRQ(self->irqn);
} else {
mp_raise_ValueError(MP_ERROR_TEXT("callback must be None or a callable object"));
}
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_callback_obj, pyb_timer_callback);
static const mp_rom_map_elem_t pyb_timer_locals_dict_table[] = {
// instance methods
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_timer_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_timer_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_channel), MP_ROM_PTR(&pyb_timer_channel_obj) },
{ MP_ROM_QSTR(MP_QSTR_counter), MP_ROM_PTR(&pyb_timer_counter_obj) },
{ MP_ROM_QSTR(MP_QSTR_source_freq), MP_ROM_PTR(&pyb_timer_source_freq_obj) },
{ MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&pyb_timer_freq_obj) },
{ MP_ROM_QSTR(MP_QSTR_prescaler), MP_ROM_PTR(&pyb_timer_prescaler_obj) },
{ MP_ROM_QSTR(MP_QSTR_period), MP_ROM_PTR(&pyb_timer_period_obj) },
{ MP_ROM_QSTR(MP_QSTR_callback), MP_ROM_PTR(&pyb_timer_callback_obj) },
{ MP_ROM_QSTR(MP_QSTR_UP), MP_ROM_INT(TIM_COUNTERMODE_UP) },
{ MP_ROM_QSTR(MP_QSTR_DOWN), MP_ROM_INT(TIM_COUNTERMODE_DOWN) },
{ MP_ROM_QSTR(MP_QSTR_CENTER), MP_ROM_INT(TIM_COUNTERMODE_CENTERALIGNED1) },
{ MP_ROM_QSTR(MP_QSTR_PWM), MP_ROM_INT(CHANNEL_MODE_PWM_NORMAL) },
{ MP_ROM_QSTR(MP_QSTR_PWM_INVERTED), MP_ROM_INT(CHANNEL_MODE_PWM_INVERTED) },
{ MP_ROM_QSTR(MP_QSTR_OC_TIMING), MP_ROM_INT(CHANNEL_MODE_OC_TIMING) },
{ MP_ROM_QSTR(MP_QSTR_OC_ACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_ACTIVE) },
{ MP_ROM_QSTR(MP_QSTR_OC_INACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_INACTIVE) },
{ MP_ROM_QSTR(MP_QSTR_OC_TOGGLE), MP_ROM_INT(CHANNEL_MODE_OC_TOGGLE) },
{ MP_ROM_QSTR(MP_QSTR_OC_FORCED_ACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_FORCED_ACTIVE) },
{ MP_ROM_QSTR(MP_QSTR_OC_FORCED_INACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_FORCED_INACTIVE) },
{ MP_ROM_QSTR(MP_QSTR_IC), MP_ROM_INT(CHANNEL_MODE_IC) },
{ MP_ROM_QSTR(MP_QSTR_ENC_A), MP_ROM_INT(CHANNEL_MODE_ENC_A) },
{ MP_ROM_QSTR(MP_QSTR_ENC_B), MP_ROM_INT(CHANNEL_MODE_ENC_B) },
{ MP_ROM_QSTR(MP_QSTR_ENC_AB), MP_ROM_INT(CHANNEL_MODE_ENC_AB) },
{ MP_ROM_QSTR(MP_QSTR_HIGH), MP_ROM_INT(TIM_OCPOLARITY_HIGH) },
{ MP_ROM_QSTR(MP_QSTR_LOW), MP_ROM_INT(TIM_OCPOLARITY_LOW) },
{ MP_ROM_QSTR(MP_QSTR_RISING), MP_ROM_INT(TIM_ICPOLARITY_RISING) },
{ MP_ROM_QSTR(MP_QSTR_FALLING), MP_ROM_INT(TIM_ICPOLARITY_FALLING) },
{ MP_ROM_QSTR(MP_QSTR_BOTH), MP_ROM_INT(TIM_ICPOLARITY_BOTHEDGE) },
{ MP_ROM_QSTR(MP_QSTR_BRK_OFF), MP_ROM_INT(BRK_OFF) },
{ MP_ROM_QSTR(MP_QSTR_BRK_LOW), MP_ROM_INT(BRK_LOW) },
{ MP_ROM_QSTR(MP_QSTR_BRK_HIGH), MP_ROM_INT(BRK_HIGH) },
};
static MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
pyb_timer_type,
MP_QSTR_Timer,
MP_TYPE_FLAG_NONE,
make_new, pyb_timer_make_new,
print, pyb_timer_print,
locals_dict, &pyb_timer_locals_dict
);
/// \moduleref pyb
/// \class TimerChannel - setup a channel for a timer.
///
/// Timer channels are used to generate/capture a signal using a timer.
///
/// TimerChannel objects are created using the Timer.channel() method.
static void pyb_timer_channel_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_timer_channel_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "TimerChannel(timer=%u, channel=%u, mode=%s)",
self->timer->tim_id,
self->channel,
qstr_str(channel_mode_info[self->mode].name));
}
/// \method capture([value])
/// Get or set the capture value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// capture is the logical name to use when the channel is in input capture mode.
/// \method compare([value])
/// Get or set the compare value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// compare is the logical name to use when the channel is in output compare mode.
/// \method pulse_width([value])
/// Get or set the pulse width value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// pulse_width is the logical name to use when the channel is in PWM mode.
///
/// In edge aligned mode, a pulse_width of `period + 1` corresponds to a duty cycle of 100%
/// In center aligned mode, a pulse width of `period` corresponds to a duty cycle of 100%
static mp_obj_t pyb_timer_channel_capture_compare(size_t n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (n_args == 1) {
// get
return mp_obj_new_int(__HAL_TIM_GET_COMPARE(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer));
} else {
// set
__HAL_TIM_SET_COMPARE(&self->timer->tim, TIMER_CHANNEL(self), mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self->timer));
return mp_const_none;
}
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_capture_compare_obj, 1, 2, pyb_timer_channel_capture_compare);
/// \method pulse_width_percent([value])
/// Get or set the pulse width percentage associated with a channel. The value
/// is a number between 0 and 100 and sets the percentage of the timer period
/// for which the pulse is active. The value can be an integer or
/// floating-point number for more accuracy. For example, a value of 25 gives
/// a duty cycle of 25%.
static mp_obj_t pyb_timer_channel_pulse_width_percent(size_t n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t period = compute_period(self->timer);
if (n_args == 1) {
// get
uint32_t cmp = __HAL_TIM_GET_COMPARE(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer);
return compute_percent_from_pwm_value(period, cmp);
} else {
// set
uint32_t cmp = compute_pwm_value_from_percent(period, args[1]);
__HAL_TIM_SET_COMPARE(&self->timer->tim, TIMER_CHANNEL(self), cmp & TIMER_CNT_MASK(self->timer));
return mp_const_none;
}
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_pulse_width_percent_obj, 1, 2, pyb_timer_channel_pulse_width_percent);
/// \method callback(fun)
/// Set the function to be called when the timer channel triggers.
/// `fun` is passed 1 argument, the timer object.
/// If `fun` is `None` then the callback will be disabled.
static mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback) {
pyb_timer_channel_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (callback == mp_const_none) {
// stop interrupt (but not timer)
__HAL_TIM_DISABLE_IT(&self->timer->tim, TIMER_IRQ_MASK(self->channel));
self->callback = mp_const_none;
} else if (mp_obj_is_callable(callback)) {
self->callback = callback;
__HAL_TIM_CLEAR_IT(&self->timer->tim, TIMER_IRQ_MASK(self->channel));
#if defined(TIM1)
if (self->timer->tim_id == 1) {
HAL_NVIC_EnableIRQ(TIM1_CC_IRQn);
} else
#endif
#if defined(TIM8) // STM32F401 doesn't have a TIM8
if (self->timer->tim_id == 8) {
HAL_NVIC_EnableIRQ(TIM8_CC_IRQn);
} else
#endif
{
HAL_NVIC_EnableIRQ(self->timer->irqn);
}
// start timer, so that it interrupts on overflow
switch (self->mode) {
case CHANNEL_MODE_PWM_NORMAL:
case CHANNEL_MODE_PWM_INVERTED:
HAL_TIM_PWM_Stop_IT(&self->timer->tim, TIMER_CHANNEL(self));
HAL_TIM_PWM_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
break;
case CHANNEL_MODE_OC_TIMING:
case CHANNEL_MODE_OC_ACTIVE:
case CHANNEL_MODE_OC_INACTIVE:
case CHANNEL_MODE_OC_TOGGLE:
case CHANNEL_MODE_OC_FORCED_ACTIVE:
case CHANNEL_MODE_OC_FORCED_INACTIVE:
HAL_TIM_OC_Stop_IT(&self->timer->tim, TIMER_CHANNEL(self));
HAL_TIM_OC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
break;
case CHANNEL_MODE_IC:
HAL_TIM_IC_Stop_IT(&self->timer->tim, TIMER_CHANNEL(self));
HAL_TIM_IC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
break;
}
} else {
mp_raise_ValueError(MP_ERROR_TEXT("callback must be None or a callable object"));
}
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_channel_callback_obj, pyb_timer_channel_callback);
static const mp_rom_map_elem_t pyb_timer_channel_locals_dict_table[] = {
// instance methods
{ MP_ROM_QSTR(MP_QSTR_callback), MP_ROM_PTR(&pyb_timer_channel_callback_obj) },
{ MP_ROM_QSTR(MP_QSTR_pulse_width), MP_ROM_PTR(&pyb_timer_channel_capture_compare_obj) },
{ MP_ROM_QSTR(MP_QSTR_pulse_width_percent), MP_ROM_PTR(&pyb_timer_channel_pulse_width_percent_obj) },
{ MP_ROM_QSTR(MP_QSTR_capture), MP_ROM_PTR(&pyb_timer_channel_capture_compare_obj) },
{ MP_ROM_QSTR(MP_QSTR_compare), MP_ROM_PTR(&pyb_timer_channel_capture_compare_obj) },
};
static MP_DEFINE_CONST_DICT(pyb_timer_channel_locals_dict, pyb_timer_channel_locals_dict_table);
static MP_DEFINE_CONST_OBJ_TYPE(
pyb_timer_channel_type,
MP_QSTR_TimerChannel,
MP_TYPE_FLAG_NONE,
print, pyb_timer_channel_print,
locals_dict, &pyb_timer_channel_locals_dict
);
static void timer_handle_irq_channel(pyb_timer_obj_t *tim, uint8_t channel, mp_obj_t callback) {
uint32_t irq_mask = TIMER_IRQ_MASK(channel);
if (__HAL_TIM_GET_FLAG(&tim->tim, irq_mask) != RESET) {
if (__HAL_TIM_GET_IT_SOURCE(&tim->tim, irq_mask) != RESET) {
// clear the interrupt
__HAL_TIM_CLEAR_IT(&tim->tim, irq_mask);
// execute callback if it's set
if (callback != mp_const_none) {
mp_sched_lock();
// When executing code within a handler we must lock the GC to prevent
// any memory allocations. We must also catch any exceptions.
gc_lock();
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_call_function_1(callback, MP_OBJ_FROM_PTR(tim));
nlr_pop();
} else {
// Uncaught exception; disable the callback so it doesn't run again.
tim->callback = mp_const_none;
__HAL_TIM_DISABLE_IT(&tim->tim, irq_mask);
if (channel == 0) {
mp_printf(MICROPY_ERROR_PRINTER, "uncaught exception in Timer(%u) interrupt handler\n", tim->tim_id);
} else {
mp_printf(MICROPY_ERROR_PRINTER, "uncaught exception in Timer(%u) channel %u interrupt handler\n", tim->tim_id, channel);
}
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
}
gc_unlock();
mp_sched_unlock();
}
}
}
}
void timer_irq_handler(uint tim_id) {
if (tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
// get the timer object
pyb_timer_obj_t *tim = MP_STATE_PORT(pyb_timer_obj_all)[tim_id - 1];
if (tim == NULL) {
// Timer object has not been set, so we can't do anything.
// This can happen under normal circumstances for timers like
// 1 & 10 which use the same IRQ.
return;
}
// Check for timer (versus timer channel) interrupt.
timer_handle_irq_channel(tim, 0, tim->callback);
uint32_t handled = TIMER_IRQ_MASK(0);
// Check to see if a timer channel interrupt was pending
pyb_timer_channel_obj_t *chan = tim->channel;
while (chan != NULL) {
timer_handle_irq_channel(tim, chan->channel, chan->callback);
handled |= TIMER_IRQ_MASK(chan->channel);
chan = chan->next;
}
// Finally, clear any remaining interrupt sources. Otherwise we'll
// just get called continuously.
uint32_t unhandled = tim->tim.Instance->DIER & 0xff & ~handled;
if (unhandled != 0) {
__HAL_TIM_DISABLE_IT(&tim->tim, unhandled);
__HAL_TIM_CLEAR_IT(&tim->tim, unhandled);
mp_printf(MICROPY_ERROR_PRINTER, "unhandled interrupt SR=0x%02x (now disabled)\n", (unsigned int)unhandled);
}
}
}
MP_REGISTER_ROOT_POINTER(struct _pyb_timer_obj_t *pyb_timer_obj_all[MICROPY_HW_MAX_TIMER]);