Skip to content
Permalink
3.0.0-Beta
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
# MCU Watchdog Timer
This example explains how to set up a Watchdog Timer (WDT) using the [WDT](https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__wdt.html) HAL resource. The WDT resets the device if it is not serviced or "kicked" within the configured timeout interval. This helps in recovering the program from an unintended lock up.
By default, the WDT is reset at least once within each timeout interval to avoid a device reset. The user LED toggles every 1 s in the main loop to indicate that the CPU is in action. In addition, the user LED blinks once for power cycling or an external reset event.
Enable an infinite loop in the `main()` function to block the execution. The device resets in ~4 s. The user LED blinks twice after the device comes out of reset.
[View this README on GitHub.](https://github.com/Infineon/mtb-example-psoc6-wdt)
[Provide feedback on this code example.](https://cypress.co1.qualtrics.com/jfe/form/SV_1NTns53sK2yiljn?Q_EED=eyJVbmlxdWUgRG9jIElkIjoiQ0UyMjAwNjAiLCJTcGVjIE51bWJlciI6IjAwMi0yMDA2MCIsIkRvYyBUaXRsZSI6Ik1DVSBXYXRjaGRvZyBUaW1lciIsInJpZCI6InNkYWsiLCJEb2MgdmVyc2lvbiI6IjMuMC4wIiwiRG9jIExhbmd1YWdlIjoiRW5nbGlzaCIsIkRvYyBEaXZpc2lvbiI6Ik1DRCIsIkRvYyBCVSI6IklDVyIsIkRvYyBGYW1pbHkiOiJQU09DIn0=)
## Requirements
- [ModusToolbox™ software](https://www.infineon.com/modustoolbox) v3.0 or later (tested with v3.0)
- PSoC™ 6 Board support package (BSP) minimum required version: 4.0.0
- Programming language: C
- Associated parts: All [PSoC™ 6 MCU](https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-6-32-bit-arm-cortex-m4-mcu) and [XMC7000 MCU](https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/) parts
## Supported toolchains (make variable 'TOOLCHAIN')
- GNU Arm® embedded compiler v10.3.1 (`GCC_ARM`) - Default value of `TOOLCHAIN`
- Arm® compiler v6.16 (`ARM`)
- IAR C/C++ compiler v9.30.1 (`IAR`)
## Supported Kits (make variable 'TARGET')
- [PSoC™ 6 Wi-Fi Bluetooth® prototyping kit](https://www.infineon.com/CY8CPROTO-062-4343W) (`CY8CPROTO-062-4343W`) – Default value of `TARGET`
- [PSoC™ 6 Wi-Fi Bluetooth® pioneer kit](https://www.infineon.com/CY8CKIT-062-WIFI-BT) (`CY8CKIT-062-WIFI-BT`)
- [PSoC™ 6 Bluetooth® LE pioneer kit](https://www.infineon.com/CY8CKIT-062-BLE) (`CY8CKIT-062-BLE`)
- [PSoC™ 6 Bluetooth® LE prototyping kit](https://www.infineon.com/CY8CPROTO-063-BLE) (`CY8CPROTO-063-BLE`)
- [PSoC™ 62S2 Wi-Fi Bluetooth® pioneer kit](https://www.infineon.com/CY8CKIT-062S2-43012) (`CY8CKIT-062S2-43012`)
- [PSoC™ 62S1 Wi-Fi Bluetooth® pioneer kit](https://www.infineon.com/CYW9P62S1-43438EVB-01) (`CYW9P62S1-43438EVB-01`)
- [PSoC™ 62S1 Wi-Fi Bluetooth® pioneer kit](https://www.infineon.com/CYW9P62S1-43012EVB-01) (`CYW9P62S1-43012EVB-01`)
- [PSoC™ 62S3 Wi-Fi Bluetooth® prototyping kit](https://www.infineon.com/CY8CPROTO-062S3-4343W) (`CY8CPROTO-062S3-4343W`)
- [PSoC™ 64 "Secure Boot" Wi-Fi Bluetooth® pioneer kit](https://www.infineon.com/CY8CKIT-064B0S2-4343W) (`CY8CKIT-064B0S2-4343W`)
- [XMC7200 evaluation kit](https://www.infineon.com/KIT_XMC72_EVK) (`KIT_XMC72_EVK`)
## Hardware Setup
This example uses the board's default configuration. See the kit user guide to ensure that the board is configured correctly.
**Note:** The PSoC™ 6 Bluetooth® LE pioneer kit (CY8CKIT-062-BLE) and the PSoC™ 6 Wi-Fi Bluetooth® pioneer kit (CY8CKIT-062-WIFI-BT) ship with KitProg2 installed. The ModusToolbox™ software requires KitProg3. Before using this code example, make sure that the board is upgraded to KitProg3. The tool and instructions are available in the [Firmware Loader](https://github.com/Infineon/Firmware-loader) GitHub repository. If you do not upgrade, you will see an error like "unable to find CMSIS-DAP device" or "KitProg firmware is out of date".
## Software Setup
See the [Operation](#operation) section for information on how to modify the code for each event.
## Using the Code Example
Create the project and open it using one of the following:
<details><summary><b>In Eclipse IDE for ModusToolbox&trade; software</b></summary>
1. Click the **New Application** link in the **Quick Panel** (or, use **File** > **New** > **ModusToolbox&trade; Application**). This launches the [Project Creator](https://www.infineon.com/ModusToolboxProjectCreator) tool.
2. Pick a kit supported by the code example from the list shown in the **Project Creator - Choose Board Support Package (BSP)** dialog.
When you select a supported kit, the example is reconfigured automatically to work with the kit. To work with a different supported kit later, use the [Library Manager](https://www.infineon.com/ModusToolboxLibraryManager) to choose the BSP for the supported kit. You can use the Library Manager to select or update the BSP and firmware libraries used in this application. To access the Library Manager, click the link from the **Quick Panel**.
You can also just start the application creation process again and select a different kit.
If you want to use the application for a kit not listed here, you may need to update the source files. If the kit does not have the required resources, the application may not work.
3. In the **Project Creator - Select Application** dialog, choose the example by enabling the checkbox.
4. (Optional) Change the suggested **New Application Name**.
5. The **Application(s) Root Path** defaults to the Eclipse workspace which is usually the desired location for the application. If you want to store the application in a different location, you can change the *Application(s) Root Path* value. Applications that share libraries should be in the same root path.
6. Click **Create** to complete the application creation process.
For more details, see the [Eclipse IDE for ModusToolbox&trade; software user guide](https://www.infineon.com/MTBEclipseIDEUserGuide) (locally available at *{ModusToolbox&trade; software install directory}/docs_{version}/mt_ide_user_guide.pdf*).
</details>
<details><summary><b>In command-line interface (CLI)</b></summary>
ModusToolbox&trade; software provides the Project Creator as both a GUI tool and the command line tool, "project-creator-cli". The CLI tool can be used to create applications from a CLI terminal or from within batch files or shell scripts. This tool is available in the *{ModusToolbox&trade; software install directory}/tools_{version}/project-creator/* directory.
Use a CLI terminal to invoke the "project-creator-cli" tool. On Windows, use the command line "modus-shell" program provided in the ModusToolbox&trade; software installation instead of a standard Windows command-line application. This shell provides access to all ModusToolbox&trade; software tools. You can access it by typing `modus-shell` in the search box in the Windows menu. In Linux and macOS, you can use any terminal application.
The "project-creator-cli" tool has the following arguments:
Argument | Description | Required/optional
---------|-------------|-----------
`--board-id` | Defined in the `<id>` field of the [BSP](https://github.com/Infineon?q=bsp-manifest&type=&language=&sort=) manifest | Required
`--app-id` | Defined in the `<id>` field of the [CE](https://github.com/Infineon?q=ce-manifest&type=&language=&sort=) manifest | Required
`--target-dir`| Specify the directory in which the application is to be created if you prefer not to use the default current working directory | Optional
`--user-app-name`| Specify the name of the application if you prefer to have a name other than the example's default name | Optional
<br />
The following example clones the "[Hello world](https://github.com/Infineon/mtb-example-psoc6-hello-world)" application with the desired name "MyHelloWorld" configured for the *CY8CKIT-062-WIFI-BT* BSP into the specified working directory, *C:/mtb_projects*:
```
project-creator-cli --board-id CY8CKIT-062-WIFI-BT --app-id mtb-example-psoc6-hello-world --user-app-name MyHelloWorld --target-dir "C:/mtb_projects"
```
**Note:** The project-creator-cli tool uses the `git clone` and `make getlibs` commands to fetch the repository and import the required libraries. For details, see the "Project creator tools" section of the [ModusToolbox&trade; software user guide](https://www.cypress.com/ModusToolboxUserGuide) (locally available at *{ModusToolbox&trade; software install directory}/docs_{version}/mtb_user_guide.pdf*).
To work with a different supported kit later, use the [Library Manager](https://www.infineon.com/ModusToolboxLibraryManager) to choose the BSP for the supported kit. You can invoke the Library Manager GUI tool from the terminal using `make modlibs` command or use the Library Manager CLI tool "library-manager-cli" to change the BSP.
The "library-manager-cli" tool has the following arguments:
Argument | Description | Required/optional
---------|-------------|-----------
`--add-bsp-name` | Name of the BSP that should be added to the application | Required
`--set-active-bsp` | Name of the BSP that should be as active BSP for the application | Required
`--add-bsp-version`| Specify the version of the BSP that should be added to the application if you do not wish to use the latest from manifest | Optional
`--add-bsp-location`| Specify the location of the BSP (local/shared) if you prefer to add the BSP in a shared path | Optional
<br />
Following example adds the CY8CPROTO-062-4343W BSP to the already created application and makes it the active BSP for the app:
```
library-manager-cli --project "C:/mtb_projects/MyHelloWorld" --add-bsp-name CY8CPROTO-062-4343W --add-bsp-version "latest-v4.X" --add-bsp-location "local"
library-manager-cli --project "C:/mtb_projects/MyHelloWorld" --set-active-bsp APP_CY8CPROTO-062-4343W
```
</details>
<details><summary><b>In third-party IDEs</b></summary>
Use one of the following options:
- **Use the standalone [Project Creator](https://www.infineon.com/ModusToolboxProjectCreator) tool:**
1. Launch Project Creator from the Windows Start menu or from *{ModusToolbox&trade; software install directory}/tools_{version}/project-creator/project-creator.exe*.
2. In the initial **Choose Board Support Package** screen, select the BSP, and click **Next**.
3. In the **Select Application** screen, select the appropriate IDE from the **Target IDE** drop-down menu.
4. Click **Create** and follow the instructions printed in the bottom pane to import or open the exported project in the respective IDE.
<br />
- **Use command-line interface (CLI):**
1. Follow the instructions from the **In command-line interface (CLI)** section to create the application, and then import the libraries using the `make getlibs` command.
2. Export the application to a supported IDE using the `make <ide>` command.
3. Follow the instructions displayed in the terminal to create or import the application as an IDE project.
For a list of supported IDEs and more details, see the "Exporting to IDEs" section of the [ModusToolbox&trade; software user guide](https://www.infineon.com/ModusToolboxUserGuide) (locally available at *{ModusToolbox&trade; software install directory}/docs_{version}/mtb_user_guide.pdf*).
</details>
## Operation
1. Connect the board to your PC using the provided USB cable through the KitProg3 USB connector.
2. Enable the blocking function ( to demonstrate WDT reset ) by updating the macro `ENABLE_BLOCKING_FUNCTION` in the main.c as shown below:
```
#define ENABLE_BLOCKING_FUNCTION 1
```
3. Program the board using one of the following:
<details><summary><b>Using Eclipse IDE for ModusToolbox&trade; software</b></summary>
1. Select the application project in the Project Explorer.
2. In the **Quick Panel**, scroll down, and click **\<Application Name> Program (KitProg3_MiniProg4)**.
</details>
<details><summary><b>Using CLI</b></summary>
From the terminal, execute the `make program` command to build and program the application using the default toolchain to the default target. The default toolchain and target are specified in the application's Makefile but you can override those values manually:
```
make program TARGET=<BSP> TOOLCHAIN=<toolchain>
```
Example:
```
make program TARGET=CY8CPROTO-062-4343W TOOLCHAIN=GCC_ARM
```
</details>
4. Observe the status of the LEDs based on different events summarized as follows:
| Project Setting | LED Status |
| :----------------------------------------------------------- | :----------------------------------------------------------- |
| With the blocking function | After approximately 4 s, the device resets and the user LED blinks twice within a second to indicate a WDT reset. |
| Without the blocking function| User LED toggles every 1 s to indicate that the CPU is in action. |
Note that the user LED blinks once on a power cycle or an external reset event.
## Design and Implementation
### Resources and Settings
**Table 1. Application Resources**
| Resource | Alias/Object | Purpose |
| :------- | :------------ | :------------ |
| WDT (HAL) | wdt_obj | WDT driver to configure the hardware resource |
| GPIO (HAL) | CYBSP_USER_LED | User LED |
The WDT in PSoC 6 MCU is a 16-bit timer and uses the Internal Low-Speed Oscillator (ILO) clock of 32 kHz. The WDT is configured using HAL APIs. These APIs configure the ignore bits and the match count for the desired period. The total timeout period of the WDT consists of three match events. To avoid a WDT reset, firmware must clear the WDT before the third match event.
**Notes:**
The interrupt should never be enabled and the WDT match event should always be cleared in the main loop. If interrupt is enabled, upon an interrupt, it needs to be cleared to avoid repeated execution of the WDT interrupt handler. This removes the actual purpose of the WDT.
The `WDT_TIME_OUT_MS` macro specifies the timeout for the reset event in milliseconds. The default value is `4000`. Change this value to get a different time out. The maximum timeout that can be set is given by `CYHAL_WDT_MAX_TIMEOUT_MS`.
To simulate a malfunction, the main loop contains a blocking function (infinite `while` loop). Enabling this blocking function causes WDT match events not to be cleared. After three match events, the device resets. The firmware blinks the user LED twice when the device comes out of reset.
## Related resources
Resources | Links
-----------|----------------------------------
Application notes | [AN228571](https://www.cypress.com/AN228571) – Getting started with PSoC&trade; 6 MCU on ModusToolbox&trade; software <br /> [AN215656](https://www.cypress.com/AN215656) – PSoC&trade; 6 MCU: Dual-CPU system design <br /> [AN234334](https://www.cypress.com/AN234334) – Getting started with XMC7000 MCU on ModusToolbox&trade; software
Code examples | [Using ModusToolbox&trade; software](https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software) on GitHub
Device documentation | [PSoC&trade; 6 MCU datasheets](https://www.cypress.com/search/all?f[0]=meta_type%3Atechnical_documents&f[1]=resource_meta_type%3A575&f[2]=field_related_products%3A114026) <br> [PSoC&trade; 6 technical reference manuals](https://www.cypress.com/search/all/PSoC%206%20Technical%20Reference%20Manual?f[0]=meta_type%3Atechnical_documents&f[1]=resource_meta_type%3A583)
Development kits | Visit www.cypress.com/microcontrollers-mcus-kits and use the options in the **Select your kit** section to filter kits by *Product family* or *Features*.
Libraries on GitHub | [mtb-pdl-cat1](https://github.com/Infineon/mtb-pdl-cat1) – Peripheral driver library (PDL) <br> [mtb-hal-cat1](https://github.com/Infineon/mtb-hal-cat1) – Hardware abstraction layer (HAL) library <br> [retarget-io](https://github.com/Infineon/retarget-io) – Utility library to retarget STDIO messages to a UART port
Middleware on GitHub | [capsense](https://github.com/Infineon/capsense) – CAPSENSE&trade; library and documents <br> [psoc6-middleware](https://github.com/Infineon/modustoolbox-software#psoc-6-middleware-libraries) – Links to all PSoC&trade; 6 MCU middleware
Tools | [Eclipse IDE for ModusToolbox&trade; software](https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/) – ModusToolbox&trade; software is a collection of easy-to-use software and tools enabling rapid development with Infineon MCUs, covering applications from embedded sense and control to wireless and cloud-connected systems using AIROC&trade; Wi-Fi and Bluetooth® connectivity devices.
<br>
## Other resources
Infineon provides a wealth of data at www.infineon.com to help you select the right device, and quickly and effectively integrate it into your design.
For PSoC&trade; 6 MCU devices, see [How to design with PSoC&trade; 6 MCU - KBA223067](https://community.infineon.com/docs/DOC-14644) in the Infineon Developer community.
## Document history
Document Title: *CE220060* - *MCU Watchdog Timer*
| Version | Description of Change |
| ------- | --------------------- |
| 1.0.0 | New code example. |
| 1.1.0 | Updated to support ModusToolbox software v2.1, added new kits.<br /> Minor changes to code. |
| 2.0.0 | Major update to support ModusToolbox software v2.2, added support for new kits.<br /> This version is not backward compatible with ModusToolbox software v2.1. <br /> Updated the code example to demonstrate watchdog reset using HAL alone. |
| 3.0.0 | Major update to support ModusToolbox&trade; v3.0, added support for KIT-XMC72-EVK. This version is not backward compatible with previous versions of ModusToolbox |
<br>
---------------------------------------------------------
© Cypress Semiconductor Corporation, 2020-2022. This document is the property of Cypress Semiconductor Corporation, an Infineon Technologies company, and its affiliates ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.
<br />
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, including its affiliates, and its directors, officers, employees, agents, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress’s published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.
<br />
Cypress, the Cypress logo, and combinations thereof, WICED, ModusToolbox, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress or a subsidiary of Cypress in the United States or in other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.