Skip to content
Permalink
bcafcf8fc3
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
381 lines (335 sloc) 13.8 KB
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2015 Paul Sokolovsky
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "py/gc.h"
#include "py/runtime.h"
#include "py/persistentcode.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "uart.h"
#include "user_interface.h"
#include "mem.h"
#include "ets_alt_task.h"
#include "espapa102.h"
#include "modmachine.h"
#define MODESP_INCLUDE_CONSTANTS (1)
void error_check(bool status, mp_rom_error_text_t msg) {
if (!status) {
mp_raise_msg(&mp_type_OSError, msg);
}
}
static mp_obj_t esp_osdebug(mp_obj_t val) {
if (val == mp_const_none) {
uart_os_config(-1);
} else {
uart_os_config(mp_obj_get_int(val));
}
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_1(esp_osdebug_obj, esp_osdebug);
static mp_obj_t esp_sleep_type(size_t n_args, const mp_obj_t *args) {
if (n_args == 0) {
return mp_obj_new_int(wifi_get_sleep_type());
} else {
wifi_set_sleep_type(mp_obj_get_int(args[0]));
return mp_const_none;
}
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp_sleep_type_obj, 0, 1, esp_sleep_type);
static mp_obj_t esp_deepsleep(size_t n_args, const mp_obj_t *args) {
uint32_t sleep_us = n_args > 0 ? mp_obj_get_int(args[0]) : 0;
// prepare for RTC reset at wake up
rtc_prepare_deepsleep(sleep_us);
system_deep_sleep_set_option(n_args > 1 ? mp_obj_get_int(args[1]) : 0);
system_deep_sleep(sleep_us);
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp_deepsleep_obj, 0, 2, esp_deepsleep);
static mp_obj_t esp_flash_id() {
return mp_obj_new_int(spi_flash_get_id());
}
static MP_DEFINE_CONST_FUN_OBJ_0(esp_flash_id_obj, esp_flash_id);
static mp_obj_t esp_flash_read(mp_obj_t offset_in, mp_obj_t len_or_buf_in) {
mp_int_t offset = mp_obj_get_int(offset_in);
mp_int_t len;
byte *buf;
bool alloc_buf = mp_obj_is_int(len_or_buf_in);
if (alloc_buf) {
len = mp_obj_get_int(len_or_buf_in);
buf = m_new(byte, len);
} else {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(len_or_buf_in, &bufinfo, MP_BUFFER_WRITE);
len = bufinfo.len;
buf = bufinfo.buf;
}
// We know that allocation will be 4-byte aligned for sure
SpiFlashOpResult res = spi_flash_read(offset, (uint32_t *)buf, len);
if (res == SPI_FLASH_RESULT_OK) {
if (alloc_buf) {
return mp_obj_new_bytes(buf, len);
}
return mp_const_none;
}
if (alloc_buf) {
m_del(byte, buf, len);
}
mp_raise_OSError(res == SPI_FLASH_RESULT_TIMEOUT ? MP_ETIMEDOUT : MP_EIO);
}
static MP_DEFINE_CONST_FUN_OBJ_2(esp_flash_read_obj, esp_flash_read);
static mp_obj_t esp_flash_write(mp_obj_t offset_in, const mp_obj_t buf_in) {
mp_int_t offset = mp_obj_get_int(offset_in);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ);
if (bufinfo.len & 0x3) {
mp_raise_ValueError(MP_ERROR_TEXT("len must be multiple of 4"));
}
ets_loop_iter(); // flash access takes time so run any pending tasks
SpiFlashOpResult res = spi_flash_write(offset, bufinfo.buf, bufinfo.len);
ets_loop_iter();
if (res == SPI_FLASH_RESULT_OK) {
return mp_const_none;
}
mp_raise_OSError(res == SPI_FLASH_RESULT_TIMEOUT ? MP_ETIMEDOUT : MP_EIO);
}
static MP_DEFINE_CONST_FUN_OBJ_2(esp_flash_write_obj, esp_flash_write);
static mp_obj_t esp_flash_erase(mp_obj_t sector_in) {
mp_int_t sector = mp_obj_get_int(sector_in);
ets_loop_iter(); // flash access takes time so run any pending tasks
SpiFlashOpResult res = spi_flash_erase_sector(sector);
ets_loop_iter();
if (res == SPI_FLASH_RESULT_OK) {
return mp_const_none;
}
mp_raise_OSError(res == SPI_FLASH_RESULT_TIMEOUT ? MP_ETIMEDOUT : MP_EIO);
}
static MP_DEFINE_CONST_FUN_OBJ_1(esp_flash_erase_obj, esp_flash_erase);
static mp_obj_t esp_flash_size(void) {
extern char flashchip;
// For SDK 1.5.2, either address has shifted and not mirrored in
// eagle.rom.addr.v6.ld, or extra initial member was added.
SpiFlashChip *flash = (SpiFlashChip *)(&flashchip + 4);
#if 0
printf("deviceId: %x\n", flash->deviceId);
printf("chip_size: %u\n", flash->chip_size);
printf("block_size: %u\n", flash->block_size);
printf("sector_size: %u\n", flash->sector_size);
printf("page_size: %u\n", flash->page_size);
printf("status_mask: %u\n", flash->status_mask);
#endif
return mp_obj_new_int_from_uint(flash->chip_size);
}
static MP_DEFINE_CONST_FUN_OBJ_0(esp_flash_size_obj, esp_flash_size);
// If there's just 1 loadable segment at the start of flash,
// we assume there's a yaota8266 bootloader.
#define IS_OTA_FIRMWARE() ((*(uint32_t *)0x40200000 & 0xff00) == 0x100)
extern byte _firmware_size[];
static mp_obj_t esp_flash_user_start(void) {
return MP_OBJ_NEW_SMALL_INT((uint32_t)_firmware_size);
}
static MP_DEFINE_CONST_FUN_OBJ_0(esp_flash_user_start_obj, esp_flash_user_start);
static mp_obj_t esp_check_fw(void) {
MD5_CTX ctx;
char *fw_start = (char *)0x40200000;
if (IS_OTA_FIRMWARE()) {
// Skip yaota8266 bootloader
fw_start += 0x3c000;
}
uint32_t size = *(uint32_t *)(fw_start + 0x8ffc);
printf("size: %d\n", size);
if (size > 1024 * 1024) {
printf("Invalid size\n");
return mp_const_false;
}
MD5Init(&ctx);
MD5Update(&ctx, fw_start + 4, size - 4);
unsigned char digest[16];
MD5Final(digest, &ctx);
printf("md5: ");
for (int i = 0; i < 16; i++) {
printf("%02x", digest[i]);
}
printf("\n");
return mp_obj_new_bool(memcmp(digest, fw_start + size, sizeof(digest)) == 0);
}
static MP_DEFINE_CONST_FUN_OBJ_0(esp_check_fw_obj, esp_check_fw);
#if MICROPY_ESP8266_APA102
static mp_obj_t esp_apa102_write_(mp_obj_t clockPin, mp_obj_t dataPin, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
esp_apa102_write(mp_obj_get_pin(clockPin),
mp_obj_get_pin(dataPin),
(uint8_t *)bufinfo.buf, bufinfo.len);
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_3(esp_apa102_write_obj, esp_apa102_write_);
#endif
static mp_obj_t esp_freemem() {
return MP_OBJ_NEW_SMALL_INT(system_get_free_heap_size());
}
static MP_DEFINE_CONST_FUN_OBJ_0(esp_freemem_obj, esp_freemem);
static mp_obj_t esp_meminfo() {
system_print_meminfo();
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_0(esp_meminfo_obj, esp_meminfo);
static mp_obj_t esp_malloc(mp_obj_t size_in) {
return MP_OBJ_NEW_SMALL_INT((mp_uint_t)os_malloc(mp_obj_get_int(size_in)));
}
static MP_DEFINE_CONST_FUN_OBJ_1(esp_malloc_obj, esp_malloc);
static mp_obj_t esp_free(mp_obj_t addr_in) {
os_free((void *)mp_obj_get_int(addr_in));
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_1(esp_free_obj, esp_free);
static mp_obj_t esp_esf_free_bufs(mp_obj_t idx_in) {
return MP_OBJ_NEW_SMALL_INT(ets_esf_free_bufs(mp_obj_get_int(idx_in)));
}
static MP_DEFINE_CONST_FUN_OBJ_1(esp_esf_free_bufs_obj, esp_esf_free_bufs);
#if MICROPY_EMIT_XTENSA || MICROPY_EMIT_INLINE_XTENSA
// We provide here a way of committing executable data to a region from
// which it can be executed by the CPU. There are 2 such writable regions:
// - iram1, which may have some space left at the end of it
// - memory-mapped flash rom
//
// By default the iram1 region (the space at the end of it) is used. The
// user can select iram1 or a section of flash by calling the
// esp.set_native_code_location() function; see below. If flash is selected
// then it is erased as needed.
#define IRAM1_END (0x40108000)
#define FLASH_START (0x40200000)
#define FLASH_END (0x40300000)
#define FLASH_SEC_SIZE (4096)
#define ESP_NATIVE_CODE_IRAM1 (0)
#define ESP_NATIVE_CODE_FLASH (1)
extern uint32_t _lit4_end;
static uint32_t esp_native_code_location;
static uint32_t esp_native_code_start;
static uint32_t esp_native_code_end;
static uint32_t esp_native_code_cur;
static uint32_t esp_native_code_erased;
void esp_native_code_init(void) {
esp_native_code_location = ESP_NATIVE_CODE_IRAM1;
esp_native_code_start = (uint32_t)&_lit4_end;
esp_native_code_end = IRAM1_END;
esp_native_code_cur = esp_native_code_start;
esp_native_code_erased = 0;
}
void *esp_native_code_commit(void *buf, size_t len, void *reloc) {
// printf("COMMIT(buf=%p, len=%u, start=%08x, cur=%08x, end=%08x, erased=%08x)\n", buf, len, esp_native_code_start, esp_native_code_cur, esp_native_code_end, esp_native_code_erased);
len = (len + 3) & ~3;
if (esp_native_code_cur + len > esp_native_code_end) {
mp_raise_msg_varg(&mp_type_MemoryError,
MP_ERROR_TEXT("memory allocation failed, allocating %u bytes for native code"), (uint)len);
}
void *dest;
if (esp_native_code_location == ESP_NATIVE_CODE_IRAM1) {
dest = (void *)esp_native_code_cur;
} else {
dest = (void *)(FLASH_START + esp_native_code_cur);
}
if (reloc) {
mp_native_relocate(reloc, buf, (uintptr_t)dest);
}
if (esp_native_code_location == ESP_NATIVE_CODE_IRAM1) {
memcpy(dest, buf, len);
} else {
SpiFlashOpResult res;
while (esp_native_code_erased < esp_native_code_cur + len) {
ets_loop_iter(); // flash access takes time so run any pending tasks
res = spi_flash_erase_sector(esp_native_code_erased / FLASH_SEC_SIZE);
if (res != SPI_FLASH_RESULT_OK) {
break;
}
esp_native_code_erased += FLASH_SEC_SIZE;
}
ets_loop_iter();
if (res == SPI_FLASH_RESULT_OK) {
res = spi_flash_write(esp_native_code_cur, buf, len);
ets_loop_iter();
}
if (res != SPI_FLASH_RESULT_OK) {
mp_raise_OSError(res == SPI_FLASH_RESULT_TIMEOUT ? MP_ETIMEDOUT : MP_EIO);
}
}
esp_native_code_cur += len;
return dest;
}
static mp_obj_t esp_set_native_code_location(mp_obj_t start_in, mp_obj_t len_in) {
if (start_in == mp_const_none && len_in == mp_const_none) {
// use end of iram1 region
esp_native_code_init();
} else {
// use flash; input params are byte offsets from start of flash
esp_native_code_location = ESP_NATIVE_CODE_FLASH;
esp_native_code_start = mp_obj_get_int(start_in);
esp_native_code_end = esp_native_code_start + mp_obj_get_int(len_in);
esp_native_code_cur = esp_native_code_start;
esp_native_code_erased = esp_native_code_start;
// memory-mapped flash is limited in extents to 1MByte
if (esp_native_code_end > FLASH_END - FLASH_START) {
mp_raise_ValueError(MP_ERROR_TEXT("flash location must be below 1MByte"));
}
}
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_2(esp_set_native_code_location_obj, esp_set_native_code_location);
#endif
static const mp_rom_map_elem_t esp_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_esp) },
{ MP_ROM_QSTR(MP_QSTR_osdebug), MP_ROM_PTR(&esp_osdebug_obj) },
{ MP_ROM_QSTR(MP_QSTR_sleep_type), MP_ROM_PTR(&esp_sleep_type_obj) },
{ MP_ROM_QSTR(MP_QSTR_deepsleep), MP_ROM_PTR(&esp_deepsleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_flash_id), MP_ROM_PTR(&esp_flash_id_obj) },
{ MP_ROM_QSTR(MP_QSTR_flash_read), MP_ROM_PTR(&esp_flash_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_flash_write), MP_ROM_PTR(&esp_flash_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_flash_erase), MP_ROM_PTR(&esp_flash_erase_obj) },
{ MP_ROM_QSTR(MP_QSTR_flash_size), MP_ROM_PTR(&esp_flash_size_obj) },
{ MP_ROM_QSTR(MP_QSTR_flash_user_start), MP_ROM_PTR(&esp_flash_user_start_obj) },
#if MICROPY_ESP8266_APA102
{ MP_ROM_QSTR(MP_QSTR_apa102_write), MP_ROM_PTR(&esp_apa102_write_obj) },
#endif
{ MP_ROM_QSTR(MP_QSTR_freemem), MP_ROM_PTR(&esp_freemem_obj) },
{ MP_ROM_QSTR(MP_QSTR_meminfo), MP_ROM_PTR(&esp_meminfo_obj) },
{ MP_ROM_QSTR(MP_QSTR_check_fw), MP_ROM_PTR(&esp_check_fw_obj) },
{ MP_ROM_QSTR(MP_QSTR_malloc), MP_ROM_PTR(&esp_malloc_obj) },
{ MP_ROM_QSTR(MP_QSTR_free), MP_ROM_PTR(&esp_free_obj) },
{ MP_ROM_QSTR(MP_QSTR_esf_free_bufs), MP_ROM_PTR(&esp_esf_free_bufs_obj) },
#if MICROPY_EMIT_XTENSA || MICROPY_EMIT_INLINE_XTENSA
{ MP_ROM_QSTR(MP_QSTR_set_native_code_location), MP_ROM_PTR(&esp_set_native_code_location_obj) },
#endif
#if MODESP_INCLUDE_CONSTANTS
{ MP_ROM_QSTR(MP_QSTR_SLEEP_NONE), MP_ROM_INT(NONE_SLEEP_T) },
{ MP_ROM_QSTR(MP_QSTR_SLEEP_LIGHT), MP_ROM_INT(LIGHT_SLEEP_T) },
{ MP_ROM_QSTR(MP_QSTR_SLEEP_MODEM), MP_ROM_INT(MODEM_SLEEP_T) },
#endif
};
static MP_DEFINE_CONST_DICT(esp_module_globals, esp_module_globals_table);
const mp_obj_module_t esp_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t *)&esp_module_globals,
};
MP_REGISTER_MODULE(MP_QSTR_esp, esp_module);