Skip to content
Permalink
bcafcf8fc3
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
361 lines (310 sloc) 11.6 KB
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2023 Ibrahim Abdelkader <iabdalkader@openmv.io>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "py/mperrno.h"
#include "py/mphal.h"
#include "pin.h"
#include "pendsv.h"
#if MICROPY_PY_NETWORK_CYW43
#include "fsl_usdhc.h"
#include "fsl_iomuxc.h"
#if MICROPY_HW_SDIO_SDMMC == 1
#define SDMMC USDHC1
#define SDMMC_IRQn USDHC1_IRQn
#ifdef MIMXRT117x_SERIES
#define SDMMC_CLOCK_MUX kCLOCK_USDHC1_ClockRoot_MuxSysPll2Pfd2
#define SDMMC_CLOCK_ROOT kCLOCK_Root_Usdhc1
#else
#define SDMMC_CLOCK_DIV kCLOCK_Usdhc1Div
#define SDMMC_CLOCK_MUX kCLOCK_Usdhc1Mux
#define SDMMC_CLOCK_ROOT kCLOCK_Usdhc1ClkRoot
#endif
#ifndef MICROPY_HW_SDIO_CLK_ALT
#define MICROPY_HW_SDIO_CMD_ALT (0)
#define MICROPY_HW_SDIO_CLK_ALT (0)
#define MICROPY_HW_SDIO_D0_ALT (0)
#define MICROPY_HW_SDIO_D1_ALT (0)
#define MICROPY_HW_SDIO_D2_ALT (0)
#define MICROPY_HW_SDIO_D3_ALT (0)
#endif
#else
#define SDMMC USDHC2
#define SDMMC_IRQn USDHC2_IRQn
#ifdef MIMXRT117x_SERIES
#define SDMMC_CLOCK_MUX kCLOCK_USDHC2_ClockRoot_MuxSysPll2Pfd2
#define SDMMC_CLOCK_ROOT kCLOCK_Root_Usdhc2
#else
#define SDMMC_CLOCK_DIV kCLOCK_Usdhc2Div
#define SDMMC_CLOCK_MUX kCLOCK_Usdhc2Mux
#define SDMMC_CLOCK_ROOT kCLOCK_Usdhc2ClkRoot
#endif
#ifndef MICROPY_HW_SDIO_CLK_ALT
#define MICROPY_HW_SDIO_CMD_ALT (6)
#define MICROPY_HW_SDIO_CLK_ALT (6)
#define MICROPY_HW_SDIO_D0_ALT (6)
#define MICROPY_HW_SDIO_D1_ALT (6)
#define MICROPY_HW_SDIO_D2_ALT (6)
#define MICROPY_HW_SDIO_D3_ALT (6)
#endif
#endif
#define SDMMC_CLOCK_400KHZ (400000U)
#define SDMMC_CLOCK_25MHZ (25000000U)
#define SDMMC_CLOCK_50MHZ (50000000U)
#if SDIO_DEBUG
#define debug_printf(...) mp_printf(&mp_plat_print, __VA_ARGS__)
#else
#define debug_printf(...)
#endif
#define DMA_DESCRIPTOR_BUFFER_SIZE (32U)
AT_NONCACHEABLE_SECTION_ALIGN(
static uint32_t sdio_adma_descriptor_table[DMA_DESCRIPTOR_BUFFER_SIZE], USDHC_ADMA2_ADDRESS_ALIGN);
typedef struct _mimxrt_sdmmc_t {
USDHC_Type *inst;
usdhc_handle_t handle;
volatile uint32_t xfer_flags;
volatile uint32_t xfer_error;
} mimxrt_sdmmc_t;
static mimxrt_sdmmc_t sdmmc = {
.inst = SDMMC,
};
typedef enum {
SDIO_TRANSFER_DATA_COMPLETE = (1 << 0),
SDIO_TRANSFER_CMD_COMPLETE = (1 << 1),
SDIO_TRANSFER_ERROR = (1 << 2),
} sdio_xfer_flags_t;
static uint32_t sdio_base_clk(void) {
#ifdef MIMXRT117x_SERIES
return CLOCK_GetRootClockFreq(SDMMC_CLOCK_ROOT);
#else
return CLOCK_GetClockRootFreq(SDMMC_CLOCK_ROOT);
#endif
}
static uint32_t sdio_response_type(uint32_t cmd) {
switch (cmd) {
case 3:
return kCARD_ResponseTypeR6;
case 5:
return kCARD_ResponseTypeR4;
case 7:
return kCARD_ResponseTypeR1;
case 52:
return kCARD_ResponseTypeR5;
default:
return kCARD_ResponseTypeNone;
}
}
static void sdio_transfer_callback(USDHC_Type *base,
usdhc_handle_t *handle, status_t status, void *userData) {
if (status == kStatus_USDHC_TransferDataComplete) {
sdmmc.xfer_flags |= SDIO_TRANSFER_DATA_COMPLETE;
} else if (status == kStatus_USDHC_SendCommandSuccess) {
sdmmc.xfer_flags |= SDIO_TRANSFER_CMD_COMPLETE;
} else if (status != kStatus_USDHC_BusyTransferring) {
sdmmc.xfer_error = status;
sdmmc.xfer_flags |= SDIO_TRANSFER_ERROR;
}
}
static void sdio_interrupt_callback(USDHC_Type *base, void *userData) {
extern void (*cyw43_poll)(void);
USDHC_DisableInterruptSignal(base, kUSDHC_CardInterruptFlag);
USDHC_ClearInterruptStatusFlags(base, kUSDHC_CardInterruptFlag);
if (cyw43_poll) {
pendsv_schedule_dispatch(PENDSV_DISPATCH_CYW43, cyw43_poll);
}
}
void sdio_init(uint32_t irq_pri) {
machine_pin_config(MICROPY_HW_SDIO_CMD, PIN_MODE_ALT, PIN_PULL_UP_100K, PIN_DRIVE_6, 0, MICROPY_HW_SDIO_CMD_ALT);
machine_pin_config(MICROPY_HW_SDIO_CLK, PIN_MODE_ALT, PIN_PULL_DISABLED, PIN_DRIVE_6, 0, MICROPY_HW_SDIO_CLK_ALT);
machine_pin_config(MICROPY_HW_SDIO_D0, PIN_MODE_ALT, PIN_PULL_UP_100K, PIN_DRIVE_6, 0, MICROPY_HW_SDIO_D0_ALT);
machine_pin_config(MICROPY_HW_SDIO_D1, PIN_MODE_ALT, PIN_PULL_UP_100K, PIN_DRIVE_6, 0, MICROPY_HW_SDIO_D1_ALT);
machine_pin_config(MICROPY_HW_SDIO_D2, PIN_MODE_ALT, PIN_PULL_UP_100K, PIN_DRIVE_6, 0, MICROPY_HW_SDIO_D2_ALT);
machine_pin_config(MICROPY_HW_SDIO_D3, PIN_MODE_ALT, PIN_PULL_UP_100K, PIN_DRIVE_6, 0, MICROPY_HW_SDIO_D3_ALT);
#ifdef MIMXRT117x_SERIES
CLOCK_InitPfd(kCLOCK_PllSys2, kCLOCK_Pfd2, 24);
clock_root_config_t rootCfg = { 0 };
rootCfg.mux = SDMMC_CLOCK_MUX;
rootCfg.div = 2;
CLOCK_SetRootClock(SDMMC_CLOCK_ROOT, &rootCfg);
#else
// Configure PFD0 of PLL2 (system PLL) fractional divider to 24 resulting in:
// with PFD0_clk = PLL2_clk * 18 / N
// PFD0_clk = 528MHz * 18 / 24 = 396MHz
CLOCK_InitSysPfd(kCLOCK_Pfd0, 24U);
CLOCK_SetDiv(SDMMC_CLOCK_DIV, 1U); // USDHC_input_clk = PFD0_clk / 2
CLOCK_SetMux(SDMMC_CLOCK_MUX, 1U); // Select PFD0 as clock input for USDHC
#endif
// Initialize USDHC
const usdhc_config_t config = {
.endianMode = kUSDHC_EndianModeLittle,
.dataTimeout = 0xFU,
#ifndef MIMXRT117x_SERIES
.readBurstLen = 0,
.writeBurstLen = 0,
#endif
.readWatermarkLevel = 128U,
.writeWatermarkLevel = 128U,
};
USDHC_Init(sdmmc.inst, &config);
USDHC_Reset(SDMMC, kUSDHC_ResetAll, 1000U);
USDHC_DisableInterruptSignal(SDMMC, kUSDHC_AllInterruptFlags);
USDHC_SetSdClock(sdmmc.inst, sdio_base_clk(), SDMMC_CLOCK_25MHZ);
USDHC_SetDataBusWidth(sdmmc.inst, kUSDHC_DataBusWidth1Bit);
mp_hal_delay_ms(10);
NVIC_SetPriority(SDMMC_IRQn, irq_pri);
EnableIRQ(SDMMC_IRQn);
usdhc_transfer_callback_t callbacks = {
.SdioInterrupt = sdio_interrupt_callback,
.TransferComplete = sdio_transfer_callback,
};
USDHC_TransferCreateHandle(sdmmc.inst, &sdmmc.handle, &callbacks, NULL);
}
void sdio_deinit(void) {
}
void sdio_reenable(void) {
}
void sdio_enable_irq(bool enable) {
if (enable) {
USDHC_ClearInterruptStatusFlags(sdmmc.inst, kUSDHC_CardInterruptFlag);
USDHC_EnableInterruptStatus(sdmmc.inst, kUSDHC_CardInterruptFlag);
USDHC_EnableInterruptSignal(sdmmc.inst, kUSDHC_CardInterruptFlag);
} else {
USDHC_DisableInterruptStatus(sdmmc.inst, kUSDHC_CardInterruptFlag);
USDHC_ClearInterruptStatusFlags(sdmmc.inst, kUSDHC_CardInterruptFlag);
USDHC_DisableInterruptSignal(sdmmc.inst, kUSDHC_CardInterruptFlag);
}
}
void sdio_enable_high_speed_4bit(void) {
USDHC_SetSdClock(sdmmc.inst, sdio_base_clk(), SDMMC_CLOCK_50MHZ);
USDHC_SetDataBusWidth(sdmmc.inst, kUSDHC_DataBusWidth4Bit);
}
static status_t sdio_transfer_dma(USDHC_Type *base,
usdhc_handle_t *handle, usdhc_transfer_t *transfer, uint32_t timeout_ms) {
status_t status;
usdhc_adma_config_t dma_config = {
.dmaMode = kUSDHC_DmaModeAdma2,
#if !FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN
.burstLen = kUSDHC_EnBurstLenForINCR,
#endif
.admaTable = sdio_adma_descriptor_table,
.admaTableWords = DMA_DESCRIPTOR_BUFFER_SIZE,
};
sdmmc.xfer_flags = 0;
sdmmc.xfer_error = 0;
uint32_t xfer_flags = SDIO_TRANSFER_CMD_COMPLETE;
if (transfer->data != NULL) {
xfer_flags |= SDIO_TRANSFER_DATA_COMPLETE;
}
status = USDHC_TransferNonBlocking(base, handle, &dma_config, transfer);
if (status != kStatus_Success) {
debug_printf("sdio_transfer_dma failed to start transfer error: %lu\n", status);
return status;
}
uint32_t start = mp_hal_ticks_ms();
while ((sdmmc.xfer_flags != xfer_flags) &&
!(sdmmc.xfer_flags & SDIO_TRANSFER_ERROR) &&
(mp_hal_ticks_ms() - start) < timeout_ms) {
MICROPY_EVENT_POLL_HOOK;
}
if (sdmmc.xfer_flags == 0) {
debug_printf("sdio_transfer_dma transfer timeout.\n");
return kStatus_Timeout;
} else if (sdmmc.xfer_flags != xfer_flags) {
debug_printf("sdio_transfer_dma transfer failed: %lu\n", sdmmc.xfer_error);
USDHC_Reset(base, kUSDHC_ResetCommand, 100);
if (xfer_flags & SDIO_TRANSFER_DATA_COMPLETE) {
USDHC_Reset(base, kUSDHC_ResetData, 100);
}
return sdmmc.xfer_error;
}
return kStatus_Success;
}
int sdio_transfer(uint32_t cmd, uint32_t arg, uint32_t *resp) {
status_t status;
usdhc_command_t command = {
.index = cmd,
.argument = arg,
.type = kCARD_CommandTypeNormal,
.responseType = sdio_response_type(cmd),
.responseErrorFlags = 0
};
usdhc_transfer_t transfer = {
.data = NULL,
.command = &command,
};
status = sdio_transfer_dma(sdmmc.inst, &sdmmc.handle, &transfer, 5000);
if (status != kStatus_Success) {
debug_printf("sdio_transfer failed!\n");
return -MP_EIO;
}
if (resp != NULL) {
*resp = command.response[0];
}
return 0;
}
int sdio_transfer_cmd53(bool write, uint32_t block_size, uint32_t arg, size_t len, uint8_t *buf) {
usdhc_data_t data = {
.enableAutoCommand12 = false,
.enableAutoCommand23 = false,
.enableIgnoreError = false,
.dataType = kUSDHC_TransferDataNormal,
};
usdhc_command_t command = {
.index = 53,
.argument = arg,
.type = kCARD_CommandTypeNormal,
.responseType = kCARD_ResponseTypeR5,
.responseErrorFlags = 0
};
usdhc_transfer_t transfer = {
.data = &data,
.command = &command,
};
if (write) {
data.rxData = NULL;
data.txData = (uint32_t *)buf;
} else {
data.txData = NULL;
data.rxData = (uint32_t *)buf;
}
if (arg & (1 << 27)) {
// SDIO_BLOCK_MODE
data.blockSize = block_size;
data.blockCount = len / block_size;
} else {
// SDIO_BYTE_MODE
data.blockSize = block_size;
data.blockCount = 1;
}
debug_printf("cmd53 rw: %d addr 0x%p blocksize %u blockcount %lu total %lu len %d\n",
write, buf, data.blockSize, data.blockCount, data.blockSize * data.blockCount, len);
status_t status = sdio_transfer_dma(sdmmc.inst, &sdmmc.handle, &transfer, 5000);
if (status != kStatus_Success) {
debug_printf("sdio_transfer_cmd53 failed!\n");
return -1;
}
return 0;
}
#endif