Skip to content
Permalink
bcafcf8fc3
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
212 lines (188 sloc) 8.28 KB
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/mphal.h"
#include "py/runtime.h"
#include "extmod/vfs.h"
#include "modrp2.h"
#include "hardware/flash.h"
#include "pico/binary_info.h"
#define BLOCK_SIZE_BYTES (FLASH_SECTOR_SIZE)
#ifndef MICROPY_HW_FLASH_STORAGE_BYTES
#define MICROPY_HW_FLASH_STORAGE_BYTES (1408 * 1024)
#endif
static_assert(MICROPY_HW_FLASH_STORAGE_BYTES % 4096 == 0, "Flash storage size must be a multiple of 4K");
#ifndef MICROPY_HW_FLASH_STORAGE_BASE
#define MICROPY_HW_FLASH_STORAGE_BASE (PICO_FLASH_SIZE_BYTES - MICROPY_HW_FLASH_STORAGE_BYTES)
#endif
static_assert(MICROPY_HW_FLASH_STORAGE_BYTES <= PICO_FLASH_SIZE_BYTES, "MICROPY_HW_FLASH_STORAGE_BYTES too big");
static_assert(MICROPY_HW_FLASH_STORAGE_BASE + MICROPY_HW_FLASH_STORAGE_BYTES <= PICO_FLASH_SIZE_BYTES, "MICROPY_HW_FLASH_STORAGE_BYTES too big");
typedef struct _rp2_flash_obj_t {
mp_obj_base_t base;
uint32_t flash_base;
uint32_t flash_size;
} rp2_flash_obj_t;
static rp2_flash_obj_t rp2_flash_obj = {
.base = { &rp2_flash_type },
.flash_base = MICROPY_HW_FLASH_STORAGE_BASE,
.flash_size = MICROPY_HW_FLASH_STORAGE_BYTES,
};
// Tag the flash drive in the binary as readable/writable (but not reformatable)
bi_decl(bi_block_device(
BINARY_INFO_TAG_MICROPYTHON,
"MicroPython",
XIP_BASE + MICROPY_HW_FLASH_STORAGE_BASE,
MICROPY_HW_FLASH_STORAGE_BYTES,
NULL,
BINARY_INFO_BLOCK_DEV_FLAG_READ |
BINARY_INFO_BLOCK_DEV_FLAG_WRITE |
BINARY_INFO_BLOCK_DEV_FLAG_PT_UNKNOWN));
// Flash erase and write must run with interrupts disabled and the other core suspended,
// because the XIP bit gets disabled.
static uint32_t begin_critical_flash_section(void) {
if (multicore_lockout_victim_is_initialized(1 - get_core_num())) {
multicore_lockout_start_blocking();
}
return save_and_disable_interrupts();
}
static void end_critical_flash_section(uint32_t state) {
restore_interrupts(state);
if (multicore_lockout_victim_is_initialized(1 - get_core_num())) {
multicore_lockout_end_blocking();
}
}
static mp_obj_t rp2_flash_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// Parse arguments
enum { ARG_start, ARG_len };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if (args[ARG_start].u_int == -1 && args[ARG_len].u_int == -1) {
#ifndef NDEBUG
extern char __flash_binary_end;
assert((uintptr_t)&__flash_binary_end - XIP_BASE <= MICROPY_HW_FLASH_STORAGE_BASE);
#endif
// Default singleton object that accesses entire flash
return MP_OBJ_FROM_PTR(&rp2_flash_obj);
}
rp2_flash_obj_t *self = mp_obj_malloc(rp2_flash_obj_t, &rp2_flash_type);
mp_int_t start = args[ARG_start].u_int;
if (start == -1) {
start = 0;
} else if (!(0 <= start && start < MICROPY_HW_FLASH_STORAGE_BYTES && start % BLOCK_SIZE_BYTES == 0)) {
mp_raise_ValueError(NULL);
}
mp_int_t len = args[ARG_len].u_int;
if (len == -1) {
len = MICROPY_HW_FLASH_STORAGE_BYTES - start;
} else if (!(0 < len && start + len <= MICROPY_HW_FLASH_STORAGE_BYTES && len % BLOCK_SIZE_BYTES == 0)) {
mp_raise_ValueError(NULL);
}
self->flash_base = MICROPY_HW_FLASH_STORAGE_BASE + start;
self->flash_size = len;
return MP_OBJ_FROM_PTR(self);
}
static mp_obj_t rp2_flash_readblocks(size_t n_args, const mp_obj_t *args) {
rp2_flash_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t offset = mp_obj_get_int(args[1]) * BLOCK_SIZE_BYTES;
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_WRITE);
if (n_args == 4) {
offset += mp_obj_get_int(args[3]);
}
memcpy(bufinfo.buf, (void *)(XIP_BASE + self->flash_base + offset), bufinfo.len);
// mp_event_handle_nowait() is called here to avoid a fail in registering
// USB at boot time, if the board is busy loading files or scanning the file
// system. mp_event_handle_nowait() will call the TinyUSB task if needed.
mp_event_handle_nowait();
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2_flash_readblocks_obj, 3, 4, rp2_flash_readblocks);
static mp_obj_t rp2_flash_writeblocks(size_t n_args, const mp_obj_t *args) {
rp2_flash_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t offset = mp_obj_get_int(args[1]) * BLOCK_SIZE_BYTES;
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_READ);
if (n_args == 3) {
mp_uint_t atomic_state = begin_critical_flash_section();
flash_range_erase(self->flash_base + offset, bufinfo.len);
end_critical_flash_section(atomic_state);
mp_event_handle_nowait();
// TODO check return value
} else {
offset += mp_obj_get_int(args[3]);
}
mp_uint_t atomic_state = begin_critical_flash_section();
flash_range_program(self->flash_base + offset, bufinfo.buf, bufinfo.len);
end_critical_flash_section(atomic_state);
mp_event_handle_nowait();
// TODO check return value
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2_flash_writeblocks_obj, 3, 4, rp2_flash_writeblocks);
static mp_obj_t rp2_flash_ioctl(mp_obj_t self_in, mp_obj_t cmd_in, mp_obj_t arg_in) {
rp2_flash_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_int_t cmd = mp_obj_get_int(cmd_in);
switch (cmd) {
case MP_BLOCKDEV_IOCTL_INIT:
return MP_OBJ_NEW_SMALL_INT(0);
case MP_BLOCKDEV_IOCTL_DEINIT:
return MP_OBJ_NEW_SMALL_INT(0);
case MP_BLOCKDEV_IOCTL_SYNC:
return MP_OBJ_NEW_SMALL_INT(0);
case MP_BLOCKDEV_IOCTL_BLOCK_COUNT:
return MP_OBJ_NEW_SMALL_INT(self->flash_size / BLOCK_SIZE_BYTES);
case MP_BLOCKDEV_IOCTL_BLOCK_SIZE:
return MP_OBJ_NEW_SMALL_INT(BLOCK_SIZE_BYTES);
case MP_BLOCKDEV_IOCTL_BLOCK_ERASE: {
uint32_t offset = mp_obj_get_int(arg_in) * BLOCK_SIZE_BYTES;
mp_uint_t atomic_state = begin_critical_flash_section();
flash_range_erase(self->flash_base + offset, BLOCK_SIZE_BYTES);
end_critical_flash_section(atomic_state);
// TODO check return value
return MP_OBJ_NEW_SMALL_INT(0);
}
default:
return mp_const_none;
}
}
static MP_DEFINE_CONST_FUN_OBJ_3(rp2_flash_ioctl_obj, rp2_flash_ioctl);
static const mp_rom_map_elem_t rp2_flash_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&rp2_flash_readblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&rp2_flash_writeblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&rp2_flash_ioctl_obj) },
};
static MP_DEFINE_CONST_DICT(rp2_flash_locals_dict, rp2_flash_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
rp2_flash_type,
MP_QSTR_Flash,
MP_TYPE_FLAG_NONE,
make_new, rp2_flash_make_new,
locals_dict, &rp2_flash_locals_dict
);