Skip to content
Permalink
1a61d26bd2
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time

Low Power Sample application

Overview

This application demonstrates the low power mode application.

This application initializes sleep mode with WICED_SLEEP_MODE_NO_TRANSPORT, and configures the WICED_P30 (SW6 BTN1) as device wake up source.

The sleep mode could be configured as WICED_SLEEP_MODE_NO_TRANSPORT or WICED_SLEEP_MODE_TRANSPORT.

Please see the following for sleep mode definition:

WICED_SLEEP_MODE_NO_TRANSPORT - This mode is configured as the application doesn't have HCI transport.

WICED_SLEEP_MODE_TRANSPORT    - This mode is configured as the application has HCI tranport and uses device wake line to wake up

After the device start up, the LED D9 is on and LED D10 is blinking for 10 seconds. After 10 seconds, then the device will enter into low power mode.

In low power mode, the LED 9 and LED 10 are off.

User could change the device wake up duration by modifying the APP_WAKEUP_TIME_IN_SECONDS macro (default is 10 seconds) in the low_power_20706.h header file.

User could press SW6 BTN1 to wake up the device while the device is in low power mode. After the device wakes up, then the LED D9 is on and LED D10 is blinking for 10 seconds.

After 10 seconds, the device will enter into low power mode again.

Instructions

To demonstrate the app, follow these steps:

  1. Before programming the CYW920706WCDEVAL board, make sure the SW5 DIP switches are in the following configuration,

    Switch State
    1 OFF
    2 OFF
    3 ON
    4 OFF
    5 OFF
    6 OFF

    This is done so that D9 and D10 can be turned off to measure the power consumption of the chip

  2. Program the board and open the PUART serial port. You should now see the debug prints.

  3. D9 is on and D10 is blinking, device is in wakeup mode.

  4. After 10 seconds, the device should enter sleep mode, both LEDs, D9 and D10, are off.

  5. Wake up the device by pressing the user button.

Schematics

Figure 1. Jumper connections schematic

Schematic

Input voltages

Input voltage supply to CYW920706WCDEVAL board:

  1. J3 goes to BT_VDDIO and should be 3.3V
  2. J9 goes to VBAT (input of internal 1.2V LDO) and should be 3.3V
  3. J10 goes to VIN_BTLDO2P5 (input of internal 2.5V LDO) and should be 3.3V

Current Measurements

The instantaneous current consumed by the device is not a steady-state value, but varies depending on the state of the chip that dynamically changes with power mode transitions, making it practically impossible to measure each individual instantaneous current with a handheld multimeter because the duration of these current bursts is very small.

Therefore, you should use a multimeter that provides the option to set the ”aperture” of the measurement. The aperture is the period ”T” during which the multimeter measures the instantaneous currents, integrates them, and then displays the average current for the period ”T”.

Please remove jumper J3 and connect the multimeter to measure the current in normal mode and low power mode.

Please remove jumper J9 and connect the multimeter to measure the current in normal mode and low power mode.

Please remove jumper J10 and connect the multimeter to measure the current in normal mode and low power mode.

The total chip current consumption is the current consumption of J3 + current consumption of J9 + current consumption of J10 for CYW920706WCDWVAL.

The following table shows the example of CYW920706WCDEVAL current consumption in different modes

State J3 Pin J9 Pin J10 Total (J3+J9+J10)
Normal Mode (D9 is on D10 is blinking) ~94 uA (D10 on) or ~26uA (D10 off) ~6.7 mA ~8.8 uA ~6.803 mA
Low Power Mode (D9 and D10 are off) ~0.8 uA ~0.1 uA ~0.2 uA ~1.1 uA

Note: The values on J3 will fluctuate due to D10 toggling. If desired, that can be eliminated by editing low_power_20706.c to disable the 2 calls to wiced_hal_gpio_set_pin_output() in the seconds_app_timer_cb() function.

BTSTACK version

BTSDK AIROC™ chips contain the embedded AIROC™ Bluetooth® stack, BTSTACK. Different chips use different versions of BTSTACK, so some assets may contain variant sets of files targeting the different versions in COMPONENT_btstack_vX (where X is the stack version). Applications automatically include the appropriate folder using the COMPONENTS make variable mechanism, and all BSPs declare which stack version should be used in the BSP .mk file, with a declaration such as:

COMPONENTS+=btstack_v1
or:
COMPONENTS+=btstack_v3

Common application settings

Application settings below are common for all BTSDK applications and can be configured via the makefile of the application or passed in via the command line.

BT_DEVICE_ADDRESS

Set the BDA (Bluetooth® Device Address) for your device. The address is 6 bytes, for example, 20819A10FFEE. By default, the SDK will set a BDA for your device by combining the 7 hex digit device ID with the last 5 hex digits of the host PC MAC address.

UART

Set to the UART port you want to use to download the application. For example 'COM6' on Windows or '/dev/ttyWICED_HCI_UART0' on Linux or '/dev/tty.usbserial-000154' on macOS. By default, the SDK will auto-detect the port.

ENABLE_DEBUG

For HW debugging, configure ENABLE_DEBUG=1. See the document AIROC™-Hardware-Debugging for more information. This setting configures GPIO for SWD.

  • CYW920819EVB-02/CYW920820EVB-02: SWD signals are shared with D4 and D5, see SW9 in schematics.

  • CYBT-213043-EVAL/CYBT-253059-EVAL: SWD signals are routed to P12=SWDCK and P13=SWDIO. Use expansion connectors to connect VDD, GND, SWDCK, and SWDIO to your SWD Debugger probe.

  • CYBT-223058-EVAL/CYW920835M2EVB-01/CYBT-243053-EVAL/CYBLE-343072-EVAL-M2B/CYBLE-333074-EVAL-M2B/CYBLE-343072-MESH/Vela-IF820-INT-ANT-DVK/Vela-IF820-EXT-ANT-DVK: SWD signals are routed to P02=SWDCK and P03=SWDIO. Use expansion connectors to connect VDD, GND, SWDCK, and SWDIO to your SWD Debugger probe.

  • CYBT-263065-EVAL/CYBT-273063-EVAL: SWD signals are routed to P02=SWDCK and P04=SWDIO. Use expansion connectors to connect VDD, GND, SWDCK, and SWDIO to your SWD Debugger probe.

  • CYBT-343026-EVAL/CYBT-353027-EVAL/CYBT-333047-EVAL: SWD signals are routed to P11=SWDCK and P15=SWDIO. Use expansion connectors to connect VDD, GND, SWDCK, and SWDIO to your SWD Debugger probe.

  • CYBT-413055-EVAL/CYBT-413061-EVAL: SWD signals are routed to P16=SWDCK and P17=SWDIO. Use expansion connectors to connect VDD, GND, SWDCK, and SWDIO to your SWD Debugger probe.

  • CYW989820EVB-01: SWDCK (P02) is routed to the J13 DEBUG connector, but not SWDIO. Add a wire from J10 pin 3 (PUART CTS) to J13 pin 2 to connect GPIO P10 to SWDIO.

  • CYW920719B2Q40EVB-01: PUART RX/TX signals are shared with SWDCK and SWDIO. Remove RX and TX jumpers on J10 when using SWD. PUART and SWD cannot be used simultaneously on this board unless these pins are changed from the default configuration.

  • CYW920721M2EVK-02/CYW920721M2EVB-03: The default setup uses P03 for SWDIO and P05 for SWDCK. Check the position of SW15 if using JLink with the DEBUG connector.

  • CYW920706WCDEVAL: SWD debugging requires fly-wire connections. The default setup P15 (J22 pin 3 or J24 pin 1) for SWDIO and P11 (J23 pin 5 or J22 pin 4) for SWDCK.

  • CYW920736M2EVB-01: SWD hardware debugging requires fly-wire connections. The only option is using P14 for SWDCK and P15 for SWDIO. These route to Arduino header J2, A1 and A0. These can be fly-wired to Arduino header J4, D4 and D5. From there the signals connect to the KitProg3 SWD bridge. In addition, the debug macros (SETUP_APP_FOR_DEBUG_IF_DEBUG_ENABLED and BUSY_WAIT_TILL_MANUAL_CONTINUE_IF_DEBUG_ENABLED) are placed in sparinit.c in code common to all applications for this device. Most applications for this device call bleprofile_GPIOInit() in subsequent code, overwriting the SWD pin configuration. To use hardware debugging after the call to bleprofile_GPIOInit(), place the debug macros in code after that call.

  • CYW943012B2EVK-01: SWD signals are shared with D4 and D5.

  • CYW920820M2EVB-01 & CYW920819M2EVB-01: The default setup uses P03 for SWDIO and P02 for SWDCK. Check the position of SW15 if using JLink with the DEBUG connector.

  • CYW989820M2EVB-01: SWD hardware debugging requires a fly-wire connection to use P14 for SWDIO. P2 is connected directly to SWDCK / ARD_D4. Fly-wire P14 / ARD_D8 on J3.10 to J4.3 / ARD_D5 to connect SWDIO.

  • SWD hardware debugging is not supported on the following:

    • CYW920721M2EVK-01
    • CYW920835REF-RCU-01
    • CYW9M2BASE-43012BT
    • CYBT-423054-EVAL
    • CYBT-423060-EVAL
    • CYBT-483056-EVAL
    • CYBT-483062-EVAL
    • CYW955572BTEVK-01
    • CYW943022BTEVK-01
DIRECT_LOAD

BTSDK chips support downloading applications either to FLASH storage or to RAM storage. Some chips support only one or the other, and some chips support both.

If a chip only supports one or the other, this variable is not applicable, applications will be downloaded to the appropriate storage supported by the device.

If a chip supports both FLASH and RAM downloads, the default is to download to FLASH, and the DIRECT_LOAD make variable may be set to 1 in the application makefile (or in the command line make command) to override the default and download to RAM.

Currently, the following chips support both FLASH and RAM download and can set DIRECT_LOAD=1 if desired:

  • CYW20835
  • CYW20706

Building and downloading code examples

Using the ModusToolbox™ Eclipse IDE

  1. Install ModusToolbox™ 2.4.1 (or higher).
  2. In the ModusToolbox™ Eclipse IDE, click the New Application link in the Quick Panel (or, use File > New > ModusToolbox IDE Application).
  3. Pick your board for BTSDK under AIROC™ Bluetooth® BSPs.
  4. Select the application in the IDE.
  5. In the Quick Panel, select Build to build the application.
  6. To program the board (download the application), select Program in the Launches section of the Quick Panel.

Using command line

  1. Install ModusToolbox™ 2.4.1 (or higher).
  2. On Windows, use Cygwin from \ModusToolbox\tools_2.x\modus-shell\Cygwin.bat to build apps.
  3. Use the tool 'project-creator-cli' under \ModusToolbox\tools_2.x\project-creator\ to create your application.

    project-creator-cli --board-id (BSP) --app-id (appid) -d (dir)
    See 'project-creator-cli --help' for useful options to list all available BSPs, and all available apps per BSP.
    For example:
    project-creator-cli --app-id mtb-example-btsdk-empty --board-id CYW920706WCDEVAL -d .

  4. To build the app call make build. For example:

    cd mtb-examples-btsdk-empty
    make build

  5. To program (download to) the board, call:

    make qprogram

  6. To build and program (download to) the board, call:

    make program

    Note: make program = make build + make qprogram

If you have issues downloading to the board, follow the steps below:

  • Press and hold the 'Recover' button on the board.
  • Press and hold the 'Reset' button on the board.
  • Release the 'Reset' button.
  • After one second, release the 'Recover' button.

Note: this is only applicable to boards that download application images to FLASH storage. Boards that only support RAM download (DIRECT_LOAD) such as CYW9M2BASE-43012BT or CYW943022BTEVK-01 can be power cycled to boot from ROM.

Over The Air (OTA) Firmware Upgrade

Applications that support OTA upgrade can be updated via the peer OTA app in:

<Workspace Dir>\mtb_shared\wiced_btsdk\tools\btsdk-peer-apps-ota

See the readme.txt file located in the above folder for instructions.
To generate the OTA image for the app, configure OTA_FW_UPGRADE=1 in the app makefile, or append OTA_FW_UPGRADE=1 to a build command line, for example:

make PLATFORM=CYW920706WCDEVAL OTA_FW_UPGRADE=1 build

This will the generate <app>.bin file in the 'build' folder.

SDK software features

  • Dual-mode Bluetooth® stack included in the ROM (BR/EDR and LE)
  • Bluetooth® stack and profile level APIs for embedded Bluetooth® application development
  • AIROC™ HCI protocol to simplify host/MCU application development
  • APIs and drivers to access on-board peripherals
  • Bluetooth® protocols include GAP, GATT, SMP, RFCOMM, SDP, AVDT/AVCT, LE Mesh
  • LE and BR/EDR profile APIs, libraries, and sample apps
  • Support for Over-The-Air (OTA) upgrade
  • Device Configurator for creating custom pin mapping
  • Bluetooth® Configurator for creating LE GATT Database
  • Peer apps based on Android, iOS, Windows, etc. for testing and reference
  • Utilities for protocol tracing, manufacturing testing, etc.
  • Documentation for APIs, datasheets, profiles, and features
  • BR/EDR profiles: A2DP, AVRCP, HFP, HSP, HID, SPP, MAP, PBAP, OPP
  • LE profiles: Mesh profiles, HOGP, ANP, BAP, HRP, FMP, IAS, ESP, LE COC
  • Apple support: Apple Media Service (AMS), Apple Notification Center Service (ANCS), iBeacon, Homekit, iAP2
  • Google support: Google Fast Pair Service (GFPS), Eddystone
  • Amazon support: Alexa Mobile Accessories (AMA)

Note: this is a list of all features and profiles supported in BTSDK, but some AIROC™ devices may only support a subset of this list.

List of boards available for use with BTSDK

Folder structure

All BTSDK code examples need the 'mtb_shared\wiced_btsdk' folder to build and test the apps. 'wiced_btsdk' includes the 'dev-kit' and 'tools' folders. The contents of the 'wiced_btsdk' folder will be automatically populated incrementally as needed by the application being used.

dev-kit

This folder contains the files that are needed to build the embedded Bluetooth® apps.

  • baselib: Files for chips supported by BTSDK. For example CYW20819, CYW20719, CYW20706, etc.

  • bsp: Files for BSPs (platforms) supported by BTSDK. For example CYW920819EVB-02, CYW920706WCDEVAL etc.

  • btsdk-include: Common header files needed by all apps and libraries.

  • btsdk-tools: Build tools needed by BTSDK.

  • libraries: Profile libraries used by BTSDK apps such as audio, LE, HID, etc.

tools

This folder contains tools and utilities need to test the embedded Bluetooth® apps.

  • btsdk-host-apps-bt-ble: Host apps (Client Control) for LE and BR/EDR embedded apps, demonstrates the use of AIROC™ HCI protocol to control embedded apps.

  • btsdk-host-peer-apps-mesh: Host apps (Client Control) and Peer apps for embedded Mesh apps, demonstrates the use of AIROC™ HCI protocol to control embedded apps, and configuration and provisioning from peer devices.

  • btsdk-peer-apps-ble: Peer apps for embedded LE apps.

  • btsdk-peer-apps-ota: Peer apps for embedded apps that support Over The Air Firmware Upgrade.

  • btsdk-utils: Utilities used in BTSDK such as BTSpy, wmbt, and ecdsa256.

See README.md in the sub-folders for more information.

Software Tools

The following tool applications are installed on your computer either with ModusToolbox™, or by creating an application in the workspace that can use the tool.

BTSpy:

BTSpy is a trace viewer utility that can be used with AIROC™ Bluetooth® platforms to view protocol and application trace messages from the embedded device. The utility is located in the folder below. For more information, see readme.txt in the same folder.
This utility can be run directly from the filesystem, or it can be run from the Tools section of the ModusToolbox™ QuickPanel, or by right-clicking a project in the Project Explorer pane and selecting the ModusToolbox™ context menu.
It is supported on Windows, Linux and macOS.
Location: <Workspace Dir>\wiced_btsdk\tools\btsdk-utils\BTSpy

Bluetooth® Classic and LE Profile Client Control:

This application emulates host MCU applications for LE and BR/EDR profiles. It demonstrates AIROC™ Bluetooth® APIs. The application communicates with embedded apps over the "WICED HCI UART" interface. The application is located in the folder below. For more information, see readme.txt in the same folder.
This utility can be run directly from the filesystem, or it can be run from the Tools section of the ModusToolbox™ QuickPanel, or by right-clicking a project in the Project Explorer pane and selecting the ModusToolbox™ context menu.
It is supported on Windows, Linux, and macOS.
Location: <Workspace Dir>\wiced_btsdk\tools\btsdk-host-apps-bt-ble\client_control

LE Mesh Client Control:

Similar to the above app, this application emulates host MCU applications for LE Mesh models. It can configure and provision mesh devices and create mesh networks. The application is located in the folder below. For more information, see readme.txt in the same folder.
This utility can be run directly from the filesystem, or it can be run from the Tools section of the ModusToolbox™ QuickPanel (if a mesh-capable project is selected in the Project Explorer pane), or by right-clicking a mesh-capable project in the Project Explorer pane and selecting the ModusToolbox™ context menu.
The full version is provided for Windows (VS_ClientControl) supporting all Mesh models.
A limited version supporting only the Lighting model (QT_ClientControl) is provided for Windows, Linux, and macOS.
Location: <Workspace Dir>\wiced_btsdk\tools\btsdk-host-peer-apps-mesh\host

Peer apps:

Applications that run on Windows, iOS or Android and act as peer Bluetooth® apps to demonstrate specific profiles or features, communicating with embedded apps over the air.
LE apps location: <Workspace Dir>\wiced_btsdk\tools\btsdk-peer-apps-ble
LE Mesh apps location: <Workspace Dir>\wiced_btsdk\tools\btsdk-host-peer-apps-mesh\peer
OTA apps location: <Workspace Dir>\wiced_btsdk\tools\btsdk-peer-apps-ota

Device Configurator:

Use this GUI tool to create source code for a custom pin mapping for your device. Run this tool from the Tools section of the ModusToolbox™ QuickPanel, or by right-clicking a project in the Project Explorer pane and selecting the ModusToolbox™ context menu.
It is supported on Windows, Linux and macOS.
Note: The pin mapping is based on wiced_platform.h for your board.
Location: <Install Dir>\tools_2.x\device-configurator

Note: Not all BTSDK chips support Device Configurator. BSPs using the following devices do not currently support Device Configurator: CYW20706, CYW20736

Bluetooth® Configurator:

Use this GUI tool to create and configure the LE GATT Database and the BR/EDR SDP Database, generated as source code for your application.
Run this tool from the Tools section of the ModusToolbox™ QuickPanel, or by right-clicking a project in the Project Explorer pane and selecting the ModusToolbox™ context menu.
It is supported on Windows, Linux and macOS.
Location: <Install Dir>\tools_2.x\bt-configurator

Tracing

To view application traces, there are 2 methods available. Note that the application needs to configure the tracing options.

  1. "WICED Peripheral UART" - Open this port on your computer using a serial port utility such as TeraTerm or PuTTY (usually using 115200 baud rate for non-Mesh apps, and 921600 for Mesh apps).
  2. "WICED HCI UART" - Open this port on your computer using the Client Control application mentioned above (usually using 3M baud rate). Then run the BTSpy utility mentioned above.

Using BSPs (platforms)

BTSDK BSPs are located in the \mtb_shared\wiced_btsdk\dev-kit\bsp\ folder by default.

a. Selecting an alternative BSP

The application makefile has a default BSP. See "TARGET". The makefile also has a list of other BSPs supported by the application. See "SUPPORTED_TARGETS". To select an alternative BSP, use Library Manager from the Quick Panel to deselect the current BSP and select an alternate BSP. Then right-click the newly selected BSP and choose 'Set Active'. This will automatically update TARGET in the application makefile.

b. Custom BSP

To create a custom BSP from a BSP template for BTSDK devices, see the following KBA article: KBA238530

Using libraries

The libraries needed by the app can be found in in the mtb_shared\wiced_btsdk\dev-kit\libraries folder. To add an additional library to your application, launch the Library Manager from the Quick Panel to add a library. Then update the makefile variable "COMPONENTS" of your application to include the library. For example:
COMPONENTS += fw_upgrade_lib

Documentation

BTSDK API documentation is available online

Note: For offline viewing, git clone the documentation repo

BTSDK Technical Brief and Release Notes are available online


The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of such marks by Infineon is under license.