This code example demonstrates the transmission of data by Memory-DMA (M-DMA) 2D transfer, shows its operation, initial setting, and interrupt handling.
Provide feedback on this code example.
- ModusToolbox™ v3.4 or later (tested with v3.4)
- Board support package (BSP) minimum required version: 1.0.0
- Programming language: C
- Associated parts: TRAVEO™ T2G family Cluster series
- GNU Arm® Embedded Compiler v11.3.1 (
GCC_ARM
) – Default value ofTOOLCHAIN
- Arm® Compiler v6.22 (
ARM
) - IAR C/C++ Compiler v9.50.2 (
IAR
)
- TRAVEO™ T2G Cluster 6M Lite Kit (
KIT_T2G_C-2D-6M_LITE
) – Default value ofTARGET
This example uses the board's default configuration. See the kit user guide to ensure that the board is configured correctly.
See the ModusToolbox™ tools package installation guide for information about installing and configuring the tools package.
Install a terminal emulator if you do not have one. Instructions in this document use Tera Term.
This example requires no additional software or tools.
The ModusToolbox™ tools package provides the Project Creator as both a GUI tool and a command line tool.
Use Project Creator GUI
-
Open the Project Creator GUI tool
There are several ways to do this, including launching it from the dashboard or from inside the Eclipse IDE. For more details, see the Project Creator user guide (locally available at {ModusToolbox™ install directory}/tools_{version}/project-creator/docs/project-creator.pdf)
-
On the Choose Board Support Package (BSP) page, select a kit supported by this code example. See Supported kits
Note: To use this code example for a kit not listed here, you may need to update the source files. If the kit does not have the required resources, the application may not work
-
On the Select Application page:
a. Select the Applications(s) Root Path and the Target IDE
Note: Depending on how you open the Project Creator tool, these fields may be pre-selected for you
b. Select this code example from the list by enabling its check box
Note: You can narrow the list of displayed examples by typing in the filter box
c. (Optional) Change the suggested New Application Name and New BSP Name
d. Click Create to complete the application creation process
Use Project Creator CLI
The 'project-creator-cli' tool can be used to create applications from a CLI terminal or from within batch files or shell scripts. This tool is available in the {ModusToolbox™ install directory}/tools_{version}/project-creator/ directory.
Use a CLI terminal to invoke the 'project-creator-cli' tool. On Windows, use the command-line 'modus-shell' program provided in the ModusToolbox™ installation instead of a standard Windows command-line application. This shell provides access to all ModusToolbox™ tools. You can access it by typing "modus-shell" in the search box in the Windows menu. In Linux and macOS, you can use any terminal application.
The following example clones the "mtb-example-ce241259-mdma-2d-transfer" application with the desired name "Mdma2dtransfer" configured for the KIT_T2G_C-2D-6M_LITE BSP into the specified working directory, C:/mtb_projects:
project-creator-cli --board-id KIT_T2G_C-2D-6M_LITE --app-id mtb-example-ce241259-mdma-2d-transfer --user-app-name Mdma2dtransfer --target-dir "C:/mtb_projects"
The 'project-creator-cli' tool has the following arguments:
Argument | Description | Required/optional |
---|---|---|
--board-id |
Defined in the field of the BSP manifest | Required |
--app-id |
Defined in the field of the CE manifest | Required |
--target-dir |
Specify the directory in which the application is to be created if you prefer not to use the default current working directory | Optional |
--user-app-name |
Specify the name of the application if you prefer to have a name other than the example's default name | Optional |
Note: The project-creator-cli tool uses the
git clone
andmake getlibs
commands to fetch the repository and import the required libraries. For details, see the "Project creator tools" section of the ModusToolbox™ tools package user guide (locally available at {ModusToolbox™ install directory}/docs_{version}/mtb_user_guide.pdf).
After the project has been created, you can open it in your preferred development environment.
Eclipse IDE
If you opened the Project Creator tool from the included Eclipse IDE, the project will open in Eclipse automatically.
For more details, see the Eclipse IDE for ModusToolbox™ user guide (locally available at {ModusToolbox™ install directory}/docs_{version}/mt_ide_user_guide.pdf).
Visual Studio (VS) Code
Launch VS Code manually, and then open the generated {project-name}.code-workspace file located in the project directory.
For more details, see the Visual Studio Code for ModusToolbox™ user guide (locally available at {ModusToolbox™ install directory}/docs_{version}/mt_vscode_user_guide.pdf).
Arm® Keil® µVision®
Double-click the generated {project-name}.cprj file to launch the Keil® µVision® IDE.
For more details, see the Arm® Keil® µVision® for ModusToolbox™ user guide (locally available at {ModusToolbox™ install directory}/docs_{version}/mt_uvision_user_guide.pdf).
IAR Embedded Workbench
Open IAR Embedded Workbench manually, and create a new project. Then select the generated {project-name}.ipcf file located in the project directory.
For more details, see the IAR Embedded Workbench for ModusToolbox™ user guide (locally available at {ModusToolbox™ install directory}/docs_{version}/mt_iar_user_guide.pdf).
Command line
If you prefer to use the CLI, open the appropriate terminal, and navigate to the project directory. On Windows, use the command-line 'modus-shell' program; on Linux and macOS, you can use any terminal application. From there, you can run various make
commands.
For more details, see the ModusToolbox™ tools package user guide (locally available at {ModusToolbox™ install directory}/docs_{version}/mtb_user_guide.pdf).
-
Connect the board to your PC using the provided USB cable through the KitProg3 USB connector
-
Open a terminal program and select the KitProg3 COM port. Set the serial port parameters to 8N1 and 115200 baud
-
Program the board using one of the following:
Using Eclipse IDE
-
Select the application project in the Project Explorer
-
In the Quick Panel, scroll down, and click <Application Name> Program (KitProg3_MiniProg4)
In other IDEs
Follow the instructions in your preferred IDE.
Using CLI
From the terminal, execute the
make program
command to build and program the application using the default toolchain to the default target. The default toolchain is specified in the application's Makefile but you can override this value manually:make program TOOLCHAIN=<toolchain>
Example:
make program TOOLCHAIN=GCC_ARM
-
-
After programming, the application starts automatically. Press user button1 to transfer data. Confirm that the messages are displayed on the UART terminal.
Figure 1. Terminal output on program startup
You can debug the example to step through the code.
In Eclipse IDE
Use the <Application Name> Debug (KitProg3_MiniProg4) configuration in the Quick Panel. For details, see the "Program and debug" section in the Eclipse IDE for ModusToolbox™ user guide.
In other IDEs
Follow the instructions in your preferred IDE.
This design consists of M-DMA, a user button1. The M-DMA is set to initiate transfers by software triggers. Pressing the user button1 generates an interrupt. When an interrupt occurs, M-DMA transfer is triggered by software. Then, M-DMA transfers data from a source address to a destination address.
The transmitted data are composed of 16 bytes on code flash memory and transferred to UART TX FIFO using 2D transfer in descriptor. The terminal software connected to the KitProg3 COM port will print out the data transferred.
This 2D transfer is configured as do X-loop four times and Y-loop is configured as do four times by one trigger.
STDOUT
At all steps, current information is printed onto UART and can be read via the terminal program.
Initialization of the GPIO for UART is done in the cy_retarget_io_init() function.
- Initializes the pin specified by CYBSP_DEBUG_UART_TX as UART TX and the pin specified by CYBSP_DEBUG_UART_RX as UART RX (these pins are connected to the KitProg3 COM port)
- The serial port parameters are 8N1 and 115200 baud
M-DMA
To configure M-DMA, the Device Configurator is used.
Figure 2. Device configurator for M-DMA
As a resource, the "DMA Controller" is chosen, which is synonymous with M-DMA. "DMA DataWire 0" and "DMA DataWire 1" reflect the two P-DMA controllers available on this device.
When configuring the DMA, specify Trigger Input, which is used to trigger other peripherals via the trigger multiplexer available on TRAVEO™ T2G MCU. In this example, the transfer is started in GPIO interrupt by pressing user button1.
Further, specify one or multiple descriptors. A descriptor is a small part of memory for the DMA to keep track of the current state (like the current source address). As descriptor chaining is supported, specify more than one. In this example, only one is used.
In the descriptor configuration, only the data transfer width is important in this example because 32-bit words are used.
In the X-loop settings, four elements are specified to transfer. In the Y-loop settings, the number of X-loops is set to 4. Then the source address and destination address are incremented three times from their initial values. As a result, this transfers a total of 16 bytes of data from the source address on code flash to the destination address on SRAM as shown in Figure 2.
The configuration is stored in flash because it will not be changed in the code.
When finished, the configurator provides the following values:
- MDMA_Descriptor_0 of type cy_stc_dmac_descriptor_t
- MDMA_Descriptor_0_config of type cy_stc_dmac_descriptor_config_t
- MDMA_CHANNEL of type cy_stc_dmac_channel_config_t
- MDMA_HW macro
- MDMA_CHANNEL macro
The above have to be used in conjunction with the right functions, as demonstrated in the code.
Trigger DMA via software
To start the DMA transfer via software, manually trigger via Trigger Multiplexer (TrigMUX). In the PDL, the Cy_TrigMux_SwTrigger() function is available. See the device datasheet for the trigger line corresponding to the used DMA channel.
Transfer finish
To see if the transfer is finished, check the status via Cy_DMAC_Channel_GetInterruptStatusMasked() by CY_DMAC_INTR_COMPLETION.
Resources | Links |
---|---|
Application notes | AN235305 – Getting started with TRAVEO™ T2G family MCUs in ModusToolbox™ AN220191 – How to use direct memory access (DMA) controller in TRAVEO™ T2G family |
Code examples | Using ModusToolbox™ on GitHub |
Device documentation | TRAVEO™ T2G MCU family datasheets TRAVEO™ T2G MCU family architecture and registers reference manuals |
Development kits | Select your kits from the Evaluation board finder |
Libraries on GitHub | mtb-pdl-cat1 – Peripheral Driver Library (PDL) retarget-io – Utility library to retarget STDIO messages to a UART port |
Tools | ModusToolbox™ – ModusToolbox™ software is a collection of easy-to-use libraries and tools enabling rapid development with Infineon MCUs for applications ranging from wireless and cloud-connected systems, edge AI/ML, embedded sense and control, to wired USB connectivity using PSOC™ Industrial/IoT MCUs, AIROC™ Wi-Fi and Bluetooth® connectivity devices, XMC™ Industrial MCUs, and EZ-USB™/EZ-PD™ wired connectivity controllers. ModusToolbox™ incorporates a comprehensive set of BSPs, HAL, libraries, configuration tools, and provides support for industry-standard IDEs to fast-track your embedded application development |
Infineon provides a wealth of data at www.infineon.com to help you select the right device, and quickly and effectively integrate it into your design.
Document title: CE241259 – PDL: M-DMA 2D transfer
Version | Description of change |
---|---|
1.0.0 | New code example |
All referenced product or service names and trademarks are the property of their respective owners.
The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of such marks by Infineon is under license.
PSOC™, formerly known as PSoC™, is a trademark of Infineon Technologies. Any references to PSoC™ in this document or others shall be deemed to refer to PSOC™.
© Cypress Semiconductor Corporation, 2025. This document is the property of Cypress Semiconductor Corporation, an Infineon Technologies company, and its affiliates ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, including its affiliates, and its directors, officers, employees, agents, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.
Cypress, the Cypress logo, and combinations thereof, ModusToolbox, PSoC, CAPSENSE, EZ-USB, F-RAM, and TRAVEO are trademarks or registered trademarks of Cypress or a subsidiary of Cypress in the United States or in other countries. For a more complete list of Cypress trademarks, visit www.infineon.com. Other names and brands may be claimed as property of their respective owners.